Pipelined Processors
Data and Control Hazards

Quiz 2 on 11/9
Let us know about conflicts

October 31, 2023 MIT 6.191 Fall 2023 L115-1

Reminder: Processor Performance

= “Tron Law” of performance:

Time Instructions Cycles Time Porf 1
Program Program Instruction Cycle Time

= Pipelining Goals:
= Lower CPI: Keep CPI as close to 1 as possible

= | ower cycle time since each pipeline stage does less work
than a single cycle processor.

October 31, 2023 MIT 6.191 Fall 2023 L15-2

Reminder: Pipelining with Data
Hazards

= Strategy 1: Stall. Wait for the result to be available
by freezing earlier pipeline stages
= Simple, wastes cycles, higher CPI

= Strategy 2: Bypass. Route data to the earlier
pipeline stage as soon as it is calculated

= More expensive, lower CPI
= Still needs stalls when result is produced after EXE stage

= Can trade off having fewer bypasses with stalling more
often

October 31, 2023 MIT 6.191 Fall 2023 L15-3

Resolving Data Hazards by Stalling

= Strategy 1: Stall. Wait for the
result to be available by
freezing earlier pipeline stages

addi x11, x10, 2
xor x13}‘ x11, x12

xori x19, x18, OxF

Stall
/N
1 2 3 2 5 6 7 8
IF addi Xor XOri
DEC addi xor xor xor XOr XOri
EXE addi | NOP | NOP | NOP | xor
MEM addi | NOP | NOP | NOP | xor
WB addi | NOP | NOP | NOP

Stalls increase CPI!

October 31, 2023

MIT 6.191 Fall 2023

'\ x11 updated

Resolving Data Hazards by Bypassing

= Strategy 2: Bypass. Route data
to the earlier pipeline stage
as soon as it is calculated

addi xll,\xle, 2
xor x13, x11, x12

xori x19, x18, OxF

= addi writes to x11 at the end of cycle 5...
but the result is produced during cycle 3,

at the EXE stage!

1 2 3 Z 5
IF addi Xor XOri
DEC addi XOr A XOri
EXE addi 1| xor
MEM addi XOr
WB addi

addi result computed

October 31, 2023

MIT 6.191 Fall 2023

Tx11 updated

L15-5

Load-To-Use Stalls

= Bypassing cannot eliminate load delays because

their data is not available until the WB stage
lw x11,,0(x10)

= Bypassing from WB still
saves a cycle:

xor x13, x11, x12

xori x19, x18, OxF

1 2 3 4 5 6 7 8
IF lw XOr XOri
DEC lw xor xor XOr XOri
EXE lw NOP | NOP|| xor XOri
MEM lw NOP|| NOP | xor
WB lw NOP | NOP | xor

October 31, 2023

lw data available

MIT 6.191 Fall 2023

N\ x11 updated

L15-6

Variable Memory Response Time

next clock cycle)

CLK
address

data

r___w___Jr___\L__
A0 [X A1l [X A2
X _ DO [X D1

Timing of clocked read assuming cache hit (returns data by

|—> PC
address
+4 < \ 4
Instruction
Cache
[: 1]
! *data

Timing of clocked read on cache miss. The cache will produce

a stall signal, telling the pipeline to wait until the memory

responds.
CLK [_/ __/ / ‘_
address [X__AO A_Al
data A_DO
stall / A

October 31, 2023

MIT 6.191 Fall

2023

L15-7

Handling Instruction Cache Miss by
Stalling

= Strategy 1: Stall. Wait for the
result to be available by
freezing earlier pipeline stages

addi x9, x10, 2
xor x13, x11, x12

xori x19, x18, OxF

Stall
/N
1 2 3 2 5 6 7 8
IF addi Xor XOri
DEC addi xor xor xor XOr XOri
EXE addi | NOP | NOP | NOP | xor
MEM addi | NOP | NOP | NOP | xor
WB addi | NOP | NOP | NOP

October 31, 2023

1

Instruction cache

hasn’t responded

to fetch of xor
MIT 6.191 Fall 2023

'\Instruction cache
returns xor instruction

Begins fetch of

Stall Logic for Instruction Cache

Miss
STALLl—_: PC » STALL==
IF +4}s e e = Disables PC and IF pipeline
Cache register
STALL— - - = Instruction cache keeps
5 L[Register working to fetch data from
DEC ecode ol e memory
STALHH_‘;NOP = Injects NOP instruction into
I - — EXE stage
EXE > Execute:D
— —— = Control logic sets STALL=1 if
+ +
instruction cache misses (in
Dat L .
MEM Caachae addition to setting it when a
[: 1 data hazard exists.)
WB | Y.Tj
Register
File
October 31, 2023 MIT 6.191 Fall 2023 L15-9

Resolving Data Cache Miss by
Stalling
addi x9, x10, 2

= Strategy 1: Stall. Wait for the 1w x13, 0(x11)
result to be available by
freezing earlier pipeline stages

xori x19, x18, OxF
ori x2, x1, 0x3

Stall
— N
1 2 3 4 5 6 7 8
IF addi lw XOfi ori
DEC addi lw XOri ori ori ori
EXE addi |lw xori | xori | Xxori
MEM addi |w
WB addi Iw Iw lw
> |
Data cache miss on lw completes

lw request of cycle 5
October 31, 2023 MIT 6.191 Fall 2023 L15-10

Control Hazards

October 31, 2023 MIT 6.191 Fall 2023 115-11

Which instruction to fetch next?

= So far, we have only considered sequential
execution where nextPC = PC + 4,

= Now, we will add support for branch and jump
instructions.

October 31, 2023 MIT 6.191 Fall 2023 L15-12

Control Hazards

= What do we need to compute nextPC?
We always need opcode to know how to compute nextPC

JAL: nextPC = pc + immJ]
JALR: nextPC = {(reg[rsl] + immI)[31:1], 1’bo}

Branches: nextPC = brFun(reg[rsl], reg[rs2])? pc + immB
: pc + 4

All other instructions: nextPC = PC + 4

= In what stage is nextPC available?
= Depends on the pipeline and instruction type

October 31, 2023 MIT 6.191 Fall 2023 115-13

Resolving Control Hazards

PC
nextPC
Instruction
IF Cache
[
v
- Register
DEC Decodel,) File
| | 1
! |
EXE Execute
1 1
| |
L 2K 7
Data
MEM Cache
| — |
WB VT
Register

File

October 31, 2023

___— FC available in IF
/ opcode, imm available in DEC

/

operations on pc, imm, reg[rsl],
reg[rs2] available in EXE

= |n what stage is nextPC
available?

EXE

EXE
EXE

DEC

MIT 6.191 Fall 2023 L15-14

Resolving Hazards

= Strategy 1: Stall. Wait for the result to be available
by freezing earlier pipeline stages

= Strategy 2: Bypass (aka Forward). Route data to
the earlier pipeline stage as soon as it is calculated

= Strategy 3: Speculate
= Guess a value and continue executing anyway
= When actual value is available, two cases
= Guessed correctly - do nothing
= Guessed incorrectly = kill & restart with correct value

October 31, 2023 MIT 6.191 Fall 2023 L15-15

Resolving Control Hazards By

Stalling

) loop: addi x12, x11, -1
= Assume bne is taken P ’ ’
. i sub x14, x15, x16
in this example
bne x13, x0, loop
1 2 3 4 5 6 7 8 9
IF addi NOP sub NOP bne NOP | NOP addi NOP
DEC addi | NOP sub NOP bne NOP | NOP | addi
EXE addi NOP sub NOP bne NOP | NOP
MEM addi NOP sub NOP bne NOP
WB addi NOP sub NOP bne
A T T
Opcode = addi Opcode = bne

Opcode not known yet

nextPC = PC + 4

nextPC unknown - Stall

October 31, 2023

nextPC unknown (branch outcome
in EXE) - Stall once more

CPI = 7 cycles / 3 instructions !
Might as well not pipeline...

MIT 6.191 Fall 2023

L15-16

Resolving Hazards

= Strategy 1: Stall. Wait for the result to be available
by freezing earlier pipeline stages

= Strategy 2: Bypass (aka Forward). Route data to
the earlier pipeline stage as soon as it is calculated

= Strategy 3: Speculate
= Guess a value and continue executing anyway
= When actual value is available, two cases
= Guessed correctly - do nothing
= Guessed incorrectly = kill & restart with correct value

October 31, 2023 MIT 6.191 Fall 2023 L15-17

Resolving Control Hazards with
Speculation

addi x12, x11, -1
sub x14, x15, x16
bne x13, x0, loop

loop:
= What’s a good guess
for nextPC? PC+4

= Assume bne is not taken xor x19, x20, x21

in example
1 2 3 4 5 6 7 8 9
IF addi sub bne Xor
DEC addi sub bne Xor
EXE addi sub bne Xor
MEM addi sub bne Xor
WB adcﬁx sub bne Xor
Start fetching at PC+4 (7‘) but Guessed right, keep going

bne not resolved yet...

October 31, 2023 MIT 6.191 Fall 2023

L15-18

Resolving Control Hazards with
Speculation

loop: addi x12, x11, -1
* What'’s a good guess sub x14, x15, x16
for nextPC? PC+4 bne x13, x@, loop
= Assume bne is taken xor x19, x20, x21
in example
1 2 3 4 5 6 Vs 8 9
IF addi sub bne Xor addi sub bne
DEC addi sub bne NOP | addi sub bne
EXE addi sub bne [NOP | NOP | addi sub
MEM addi sub bne | NOP | NOP | addi
WB addi sub bne | NOP | NOP
!)
Start fetching at PC+4 () but Guessed wrong, annul & xor

and restart fetching at loop
MIT 6.191 Fall 2023

bne not resolved yet ...

October 31, 2023 L15-19

Speculation Logic

IF

DEC

EXE

MEM

WB

ANNUL STALL

PC

October 31, 2023

¢
—
4 Instruction
' + Cache
STALL
ANNUL = = r
—| Register
Decode || File
.1 ¥NOP __|¥¥
ANNUL Terasc 7
[]
¥ ¥ ¥
ANNUL > Execute:D
| | — | |
1 |
(2K ;
Data
L, | Cache

A 4 E
A 4

File

Register

MIT 6.191 Fall 2023

When EXE finds a jump
or taken branch, it
supplies nextPC and
sets ANNUL=1

= Writes NOPs in IF/DEC
and DEC/EXE pipeline
registers, annulling
instructions currently in
IF and DEC stages (called
branch annulment)

= |Loads the branch or jump
target into PC register

L15-20

Interaction Between Stalling and
Speculation

= Suppose that, on the same cycle,
= EXE wants to annul DEC and IF due to a control hazard
= DEC wants to stall due to a data hazard

= Example: Assume bne is taken

. 1 2 3 4 5
loop: addi x12, x11, -1 F Taddi | 1w | bne or
lw x14, @(x15) DEC addi lw bne
bne x13, x0, loop g p addi | Iw | bne

MEM addi Iw
xor x19, x20, x21 WB addi

bne wants to annul; wants to stall

= Which should take precedence, ANNUL or STALL?
ANNUL, because it comes from an earlier instruction

October 31, 2023 MIT 6.191 Fall 2023 L15-21

Putting It All Together

= |Let’'s see an example with loop: addi x12, x11, -1
stalls, bypassing, and lw x14, 0(x15)
(mis)speculation bne x13, x0, loop

= Assume bne is taken once,
then not taken xor x19, x20, x21

1 2 3 4 5 | 6 7 8 9 | 10 | 11 | 12
IF |addi| Iw | bne xor | addi| Ilw | bne Xor | xor
DEC addi| Iw | bne NOP | addi| Iw | bne || xor
EXE addi| Iw | bne |[NOP|NOP| addi| Iw | bne | NORF
MEM addi| Iw | bne |[NOP|NOP | addi| Iw | bnej]| NOP
WB addi| Iw | bne |[NOP|NOP | addi| Iw | bne
bne taken, annuls and xor /‘ stalls on x14 /‘

lw value bypassed

MIT 6.191 Fall 2023 L15-22

October 31, 2023

Summary

ANNLiL R
= Stalling can address . S
all pipeline hazards — | [structior IF
: Cache
Slmpl.e, bl:It hurts CPI J—— . 4
= Bypassing improves S ecode] Register
CPI on data hazards e | DEC
: - ANNUL Temaris 75 -K.%
= Speculation improves . i —
CPI on control hazards ANNUL [~ Execute | EXE
= Speculation works only i = —
when it’s easy to make good guesses v ¥
Data MEM
» | Cache

October 31, 2023 MIT 6.191 Fall 2023

‘; WB

Register
File

L15-23

Thank you!

Next lecture: Operating Systems

October 31, 2023 MIT 6.191 Fall 2023 L15-24

