
MIT 6.191 Fall 2023

Lecture 16
Operating Systems

November 2, 2023 1



Resolving Control Hazards with 
Speculation

§ What’s a good guess
for nextPC?

§ Assume bne is taken
in example

PC+4

1 2 3 4 5 6 7 8 9

IF addi sub bne and xor addi sub bne and

DEC addi sub bne and NOP addi sub bne

EXE addi sub bne NOP NOP addi sub

MEM addi sub bne NOP NOP addi

WB addi sub bne NOP NOP

Start fetching at PC+4 (and) but
bne not resolved yet …

Guessed wrong, annul and & xor
and restart fetching at loop

loop: addi x12, x11, -1
sub x14, x15, x16
bne x13, x0, loop
and x16, x17, x18
xor x19, x20, x21
…

L15-2MIT 6.191 Fall 2023November 2, 2023



6.191 So Far: Single-User Machines

§ Hardware executes a single program
§ This program has direct and complete access to all 

hardware resources in the machine
§ The instruction set architecture (ISA) is the interface 

between software and hardware
§ Most computer systems don’t work like this!

Program

Hardware

Processor Memory Disk Network card Display

…

Keyboard

ISA
(e.g., RISC-V)

3MIT 6.191 Fall 2023November 2, 2023



Operating Systems

§ Multiple executing programs share the machine
§ Each executing program does not have direct 

access to hardware resources
§ Instead, an operating system (OS) controls these 

programs and how they share hardware resources
§ Only the OS has unrestricted access to hardware

§ The application binary interface (ABI) is the 
interface between programs and the OS 

program1

Operating System (OS)

Hardware

programN
…program2

ISA

Application Binary
Interface (ABI)

4MIT 6.191 Fall 2023November 2, 2023



Nomenclature: Process vs. Program

§ A program is a collection of instructions
(i.e., just the code)

§ A process is an instance of a program that is being 
executed
§ Includes program code + state (registers, memory, and 

other resources)

§ The OS Kernel is a process with special privileges

process1

OS Kernel

Hardware

processN
…process2

ISA

Application Binary
Interface (ABI)

5MIT 6.191 Fall 2023November 2, 2023



Goals of Operating Systems

§ Protection and privacy: Processes cannot access 
each other’s data

§ Abstraction: OS hides details of underlying 
hardware 
§ e.g., processes open and access files instead of issuing 

raw commands to the disk

§ Resource management: OS controls how processes 
share hardware (CPU, memory, disk, etc.)

process1

OS Kernel

Hardware

processN
…process2

ISA

Application Binary
Interface (ABI)

6MIT 6.191 Fall 2023November 2, 2023



Operating Systems: The Big Picture

§ The OS kernel provides a private
address space to each process
§ Each process is allocated space in

physical memory by the OS
§ A process is not allowed to access

the memory of other processes

§ The OS kernel schedules processes
into the CPU
§ Each process is given a fraction of CPU time
§ A process cannot use more CPU time than allowed

§ The OS kernel lets processes invoke system services (e.g., 
access files or network sockets) via system calls

free

Process 2
memory

OS Kernel
memory

Process 1
memory

Ph
ys

ic
al

M
em

or
y

free

…
Running
process Process 1 Process 2

Time

Process 1

7MIT 6.191 Fall 2023November 2, 2023



Virtual Machines
A New Layer of Abstraction

§ The OS gives a Virtual Machine (VM) to each process
§ Each process believes it runs on its own machine…
§ …but this machine does not exist in physical hardware

OS Kernel (specially privileged process)

Physical Hardware

Processor Memory Disk Network card Display

…
Keyboard

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process2

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process3

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process4
ABI

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process1

VM1

8MIT 6.191 Fall 2023November 2, 2023



Virtual Machines
A New Layer of Abstraction

§ A Virtual Machine (VM) is an emulation of a 
computer system
§ Very general concept, used beyond operating systems

ABI
Virtual

Processor
Virtual

Memory Events Files Sockets Syscalls

Process1

OS Kernel (specially privileged process)

Physical Hardware

Processor Memory Disk Network card Display

…
Keyboard

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process2

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process3

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process4

VM1

9MIT 6.191 Fall 2023November 2, 2023



Virtual Machines Are Everywhere

§ Example:

RISC-V process (quicksort)

RISC-V emulator (sim.py) Implements a RISC-V VM 

Python interpreter (CPython) Implements a Python VM 

Windows/Linux/BSD/… ABI

Linux OS kernel Implements a Linux-x86 VM

VMware

Implements an x86 physical 
machine

OS kernel (Win/Linux/BSD/…)

Hardware (Athena server)

RISC-V ISA

Python Language

Linux ABI

x86 ISA

Implements an OS-x86 VM
x86 ISA

Implements an x86 system VM

1
0

MIT 6.191 Fall 2023November 2, 2023



Implementing Virtual Machines

§ Virtual machines can be implemented entirely in 
software, but at a performance cost
§ e.g., Python programs are 10-100x slower than native 

Linux programs due to Python interpreter overheads

§ We want to support operating systems with 
minimal overheads à need hardware support for 
virtual machines!

1
1

MIT 6.191 Fall 2023November 2, 2023



These ISA extensions work only if hardware and
software (OS) agree on a common set of conventions!

ISA Extensions to Support OS

§ Two modes of execution: user and supervisor
§ OS kernel runs in supervisor mode
§ All other processes run in user mode

§ Privileged instructions and registers that
are only available in supervisor mode

§ Exceptions and interrupts to safely
transition from user to supervisor mode

§ Virtual memory to provide private address spaces 
and abstract the storage resources of the machine

Today

Next lecture

1
2

MIT 6.191 Fall 2023November 2, 2023



Exceptions

§ Exception: Event that needs to be processed by the 
OS kernel. The event is usually unexpected or rare.

process

HI1

HI2

HIn

exception 
handler
(in OS kernel)

Ii-1

Ii

Ii+1

1
3

MIT 6.191 Fall 2023November 2, 2023



Causes for Exceptions

§ The terms exception and interrupt are often used 
interchangeably, with a minor distinction:

§ Exceptions usually refer to synchronous events, 
generated by the process itself (e.g., illegal instruction, 
divide-by-0, illegal memory address, system call)

§ Interrupts usually refer to asynchronous events, 
generated by I/O devices (e.g., timer expired, 
keystroke, packet received, disk transfer complete)

§ We use exception to encompass both types of events, 
and use synchronous exception for synchronous events

1
4

MIT 6.191 Fall 2023November 2, 2023



Handling Exceptions

§ When an exception happens, the processor:
§ Stops the current process at instruction Ii, completing all the 

instructions up to Ii-1 (precise exceptions) 
§ Saves the PC of instruction Ii and the reason for the exception 

in special (privileged) registers
§ Enables supervisor mode, disables interrupts, and transfers 

control to a pre-specified exception handler PC

§ After the OS kernel handles the exception, it returns 
control to the process at instruction Ii
§ Exception is transparent to the process!

§ If the exception is due to an illegal operation by the 
program that cannot be fixed (e.g., an illegal memory 
access), the OS aborts the process

1
5

MIT 6.191 Fall 2023November 2, 2023



Exception Use #1: CPU Scheduling
Enabled by timer interrupts

§ The OS kernel schedules processes into the CPU
§ Each process is given a fraction of CPU time
§ A process cannot use more CPU time than allowed

§ Key enabling technology: Timer interrupts
§ Kernel sets timer, which raises an interrupt after a specified time

Process 1 Process 2

Time (milliseconds)

Process 1Kernel

Set timer to fire in 20ms
Load state (regs, pc, addr space) of process 1
Return control to process 1

Timer interrupt à exception handler runs
Save state of process 1
Decide to schedule process 2
Set timer to fire in 30ms
Load state of process 2, return control to it

Process 2
Process
running
in CPU

0 10 30 60 80 110

1
6

MIT 6.191 Fall 2023November 2, 2023



Exception Use #2: Emulating Instructions
Enabled by illegal instruction exceptions

§ mul x1, x2, x3 is an instruction in the RISC-V ‘M’ 
extension (x1 ß x2 * x3)
§ If ‘M’ is not implemented, this is an illegal instruction

§ What happens if we run code from an RV32IM 
machine on an RV32I machine?
§ mul causes an illegal instruction exception

§ The exception handler can take over and abort the 
process… but it can also emulate the instruction!

1
7

MIT 6.191 Fall 2023November 2, 2023



Emulating Unsupported Instructions

§ Result: Program believes it is executing in a RV32IM 
processor, when it’s actually running in a RV32I
§ Any drawback?

Process
running
in CPU

Process 1 Kernel

Time

Much slower than a hardware multiply

Process 1

Process 1 code:
…
add a3, a2, a1
mul a4, a3, a2
xor a5, a4, a3 
…

Save state of process 1
Emulate a multiply instruction in software
(e.g., by repeated addition)
Load state of process 1
Return control to process 1 at instruction
following the multiply

Illegal instruction 
exception

1
8

MIT 6.191 Fall 2023November 2, 2023



Exception Use #3: System Calls

§ The OS kernel lets processes invoke system
services (e.g., access files) via system calls

§ Processes invoke system calls by executing a 
special instruction that causes an exception
(e.g., ecall in RISC-V)

ABI
Virtual

Processor
Virtual

Memory Files Sockets Other services

Process1

OS kernel

Hardware

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process2

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process3

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process4

VM1

System calls

1
9

MIT 6.191 Fall 2023November 2, 2023



Typical System Calls

§ Accessing files (sys_open/close/read/write/…)
§ Using network connections (sys_bind/listen/accept/…)
§ Managing memory (sys_mmap/munmap/mprotect/…)
§ Getting information about the system or process 

(sys_gettime/getpid/getuid/…)
§ Waiting for a certain event (sys_wait/sleep/yield…)
§ Creating and interrupting other processes 

(sys_fork/exec/kill/…)
§ … and many more!

§ Programs rarely invoke system calls directly. Instead, they 
are used by library/language routines

§ Some of these system calls may block the process!

2
0

MIT 6.191 Fall 2023November 2, 2023



Process Life Cycle: The Full Picture

§ OS maintains a list of all processes and their status 
{ready, executing, waiting}
§ A process is scheduled to run for a specified amount of CPU time 

or until completion
§ If a process invokes a system call that cannot be satisfied 

immediately (e.g., a file read that needs to access disk), it is 
blocked and put in the waiting state

§ When the waiting condition has been satisfied, the waiting 
process is woken up and put in the ready list

ready executing waiting
blocked

scheduled
completed

process 
created

woken-up

descheduled

2
1

MIT 6.191 Fall 2023November 2, 2023



Exceptions in RISC-V

§ RISC-V provides several privileged registers, called 
control and status registers (CSRs), e.g.,
§ mepc: exception PC
§ mcause: cause of the exception (interrupt, illegal instr, etc.)
§ mtvec: address of the exception handler
§ mstatus: status bits (privilege mode, interrupts enabled, etc.)

§ RISC-V also provides privileged instructions, e.g., 
§ csrr and csrw to read/write CSRs
§ mret to return from the exception handler to the process
§ Trying to execute these instructions from user mode causes an 

exception à normal processes cannot take over the system

2
2

MIT 6.191 Fall 2023November 2, 2023



System Calls in RISC-V

§ ecall instruction causes an exception, sets mcause
CSR to a particular value

§ ABI defines how process and kernel pass 
arguments and results

§ Typically, similar conventions as a function call:
§ System call number in a7
§ Other arguments in a0-a6
§ Results in a0-a1 (or in memory)
§ All registers are preserved (treated as callee-saved)

2
3

MIT 6.191 Fall 2023November 2, 2023



Summary

§ Operating System goals:
§ Protection and privacy: Processes

cannot access each other’s data
§ Abstraction: OS hides details

of underlying hardware 
§ e.g., processes open and access files instead of issuing raw 

commands to disk
§ Resource management: OS controls how processes share 

hardware resources (CPU, memory, disk, etc.)

§ Key enabling technologies:
§ User mode + supervisor mode w/ privileged instructions
§ Exceptions to safely transition into supervisor mode
§ Virtual memory to provide private address spaces and 

abstract the machine’s storage resources (next lecture)

process1

Operating system

Hardware

processN
…

2
4

MIT 6.191 Fall 2023November 2, 2023



25

Thank you!

Next lecture: Virtual memory

MIT 6.191 Fall 2023November 2, 2023



§ Definition: 
§ A processor makes an incorrect prediction about the future 

execution path of a program. E.g. branch prediction.
§ Importance: 

§ Efficient handling of mis-speculation exceptions is crucial to 
ensure optimal processor performance and accurate 
execution of instructions.

§ Operating System's Role 
§ The OS can implement efficient process and thread 

scheduling algorithms.
§ Helps distribute the workload evenly across processor 

cores.
§ The OS may implement performance monitoring tools.

§ E.g., identifying patterns of frequent mis-speculation and 
optimizing code execution accordingly.

26

Exception Use #3: Processor Pipeline 
Exceptions
Mis-speculation

MIT 6.191 Fall 2023November 2, 2023



Processor Pipeline Exceptions
Mis-speculation

1. Detection
§ The processor monitors the execution of instructions and 

detects mis-speculation when the actual outcome of a branch 
instruction does not match the predicted outcome.

2. Recovery
§ The processor discards all the instructions that were executed 

speculatively after the mis-speculated branch. 
§ Restore the state of the processor (register values, memory, 

etc.) to the state before the mis-speculation occurs.
3. Retraining

§ The processor updates the branch prediction mechanisms 
based on the correct outcome of the branch instruction. 

§ This helps improve prediction accuracy for similar branch 
instructions in the future.

27MIT 6.191 Fall 2023November 2, 2023


