
MIT 6.191 Fall 2023November 9, 2023 L18-

Lecture 18
Virtual Memory 2

1

MIT 6.191 Fall 2023 L18-November 9, 2023

Reminder: Virtual Memory

▪ Goal of virtual memory
▪ Abstraction of the storage resources

of the machine
▪ Protection and privacy: Processes

cannot access each other’s data

▪ Today’s lecture
▪ Translation Lookaside Buffer (TLB)

for address translation
▪ Caches with virtual memory
▪ Hierarchical page table
▪ Page replacement algorithm
▪ Page sharing and memory mapping
▪ Copy-on-Write

2

Physical
MemoryPage Table

CPU

Disk

R=0

R=1

VPN 5

MIT 6.191 Fall 2023 L18-November 9, 2023

Translation Lookaside Buffer (TLB)
Problem: Address translation is very expensive!

Each reference requires accessing page table

Solution: Cache translations in TLB
TLB hit Þ Single-cycle translation
TLB miss Þ Access page table to refill TLB

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

fault?

3

MIT 6.191 Fall 2023 L18-November 9, 2023

TLB Designs

▪ Typically 32-128 entries, 4 to 8-way set-associative
▪ Modern processors use a hierarchy of TLBs

(e.g., 128-entry L1 TLB + 2K-entry L2 TLB)

▪ Switching processes is expensive because TLB has to be
flushed
▪ Alternatively, include process ID in TLB entries to avoid flushing

▪ Handling a TLB miss: Look up the page table (a.k.a. “walk” the
page table). If the page is in memory, load the VPNàPPN
translation in the TLB. Otherwise, cause a page fault
▪ Page faults are always handled in software
▪ But page walks are usually handled in hardware using a memory

management unit (MMU)
▪ RISC-V, x86 access page table in hardware

4

MIT 6.191 Fall 2023 L18-November 9, 2023

Example: TLB and Page Table
Suppose
• Virtual memory of 232 bytes
• Physical memory of 224 bytes
• Page size is 210 (1 K) bytes
• 4-entry fully associative TLB

1. How many pages can be stored in
physical memory at once?

2. How many entries are there in
the page table?

3. How many bits per entry in the
page table? (Assume each entry
has PPN, resident bit, dirty bit)

4. How many pages does page table
take?

6. What is the physical address for
virtual address 0x1804? What
components are involved in the
translation?

7. Same for 0x1080
8. Same for 0x0FC

R D PPN

0 0 7
1 1 9
1 0 0
0 0 5
1 0 5
0 0 3
1 1 2
1 0 4
1 0 1

…

VPN | V R D PPN
----+----------
0 | 1 0 0 7
6 | 1 1 1 2
1 | 1 1 1 9
3 | 1 0 0 5

Page
Table

TLB
Tag Data

VPN

0
1
2
3
4
5
6
7
8

5

232/210=222

224/210=214

14+1+1=16

2*222/210=213

0x804

MIT 6.191 Fall 2023 L18-November 9, 2023

Address Translation
Putting it all together

Virtual Address

TLB
Lookup

Page Table
Lookup

Update
TLB

Page Fault
(OS loads page)

Protection
Check

Physical
Address
(to mem)

miss hit

the page is
Ïmemory Îmemory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULT

Resume process at
faulting instruction

6

MIT 6.191 Fall 2023 L18-November 9, 2023

Using Caches with Virtual Memory

Cache TLBCPU Main
memory

Physically-Addressed
Cache

•Avoids stale cache data
after context switch

•SLOW: Virtualàphysical
translation before every
cache access

Virtually-Addressed
Cache

•FAST: No virtualàphysical
translation on cache hits

•Problem: Must flush cache
after context switch

CacheTLBCPU Main
memory

7

MIT 6.191 Fall 2023 L18-November 9, 2023

Best of Both Worlds: Virtually-Indexed, Physically-
Tagged Cache (VIPT)

OBSERVATION: If cache index bits are a subset of page
offset bits, tag access in a physical cache can be done in
parallel with TLB access. Tag from cache is compared with
physical page address from TLB to determine hit/miss.

Problem: Limits # of bits of cache index → can only increase
cache capacity by increasing associativity!

Cache

CPU Main
memory

TLB

Cache index comes entirely
from address bits in page
offset – don’t need to wait
for TLB to start cache lookup!

8

MIT 6.191 Fall 2023 L18-November 9, 2023

Problem: Linear Page Table Size

▪ With 32-bit addresses, 4 KB pages & 4-byte PTEs:
▪ 220 PTEs, i.e, 4 MB page table per process
▪ We often have hundreds to thousands of processes per

machine… use GBs of memory just for page tables?

▪ Use larger pages?
▪ Internal fragmentation (not all memory in a page is used)
▪ Larger page fault penalty (more time to read from disk)

▪ What about a 64-bit virtual address space?
▪ Even 1MB pages would require 244 8-byte PTEs (35 TB!)

▪ Solution: Use a hierarchical page table

MIT 6.191 Fall 2023November 9, 2023 L18-

Hierarchical Page Table

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

offset
p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
01112212231

10-bit
L1 index

10-bit
L2 index

10

MIT 6.191 Fall 2023November 9, 2023 L18-

Hierarchical Page Table: Pros & Cons

▪ Page table memory is
proportional to amount
of memory used by
process
▪ Assume a process only

uses 8MB of virtual
memory

▪ Memory usage:
▪ L1: 210 entries * 4

bytes/entry = 4 KB
▪ L2: 8MB/4KB = 211

pages -> 2 page
tables in L2 -> 2 *
4KB = 8KB

▪ Compare to single
level: 4MB -> 12KB

▪ Each page table walk
now needs multiple
memory accesses
▪ But TLBs make page

table walks rare

11

Level 1
Page Table

Level 2
Page Tables

Root of Current
Page Table p1

p2

p1 p2 offset
01112212231

10-bit
L1 index

10-bit
L2 index

Virtual Address

page in primary memory
page in secondary memory

PTE of a nonexistent page

MIT 6.191 Fall 2023 L18-November 9, 2023

Multilevel Paging

12

▪ Multilevel Paging: Reduce the size of page tables for a large
address space
▪ Virtual address is divided into several parts, with each part

corresponding to a level in the page table hierarchy.
▪ Drawbacks: Increased latency due to multiple page faults

Reference: Stanford EE108b

Virtual memory address
Page Frame Entries

MIT 6.191 Fall 2023 L18-November 9, 2023

Page Table Problems

13

▪ Page tables are large
▪ Consider the case where the machine offers a 32 bit

address space and uses 4 KB pages
▪ Page table contains 232 / 212 = 220 entries
▪ Assume each entry contains ~32 bits
▪ Page table requires 4 MB of RAM per process!

▪ “Internal” Fragmentation resulting from fixed size pages since
not all of page will be filled with data
▪ Problem gets worse as page size is increased

▪ Each data access now takes two memory accesses
▪ First memory reference uses the page table base register

to lookup the frame
▪ Second memory access to actually fetch the value

Reference: Stanford EE108b

MIT 6.191 Fall 2023 L18-November 9, 2023

Page Replacement Algorithm

14

▪ When physical memory is full, which physical page is the
victim to be evicted on a page fault?

▪ Goal: Minimize page faults and optimize the overall system
performance

▪ Common page replacement algorithms
▪ Least Recently Used (LRU):
▪ Assumption: The least recently used page is likely to be

the least needed in the near future
▪ Can be expensive to implement in hardware or

software, as it requires maintaining a double linked list
or similar data structure to track the access order of
pages

▪ CLOCK Algorithm:
▪ An approximation of the LRU algorithm by evicting not

recently used page

MIT 6.191 Fall 2023 L18-November 9, 2023

Least Recently Used (LRU)

15

▪ Example implementation of LRU: Hash map and double linked
list

▪ Large overhead of maintaining such a large map and list in a
system

Value Pointer List
C
B
A
…

C

B

A

Value Pointer List
D
C
B
A

C

B

A

DHead (Mostly recent used)

Tail (Least used)

#Physical pages: 3
Access pattern: A, B, C, D

Head

Tail

MIT 6.191 Fall 2023 L18-November 9, 2023

CLOCK Page Replacement Algorithm

16

▪ CLOCK approximates LRU by finding the not recently used
page
▪ It maintain a circular list of pages resident in memory
▪ Each page has a use bit that is set to 1 when the page is

accessed
▪ The clock hand points to the potential

victim. When a page fault occurs:
A

C B

Use bit=1

Use bit=1Use bit=1#Physical pages: 3
Access pattern: A, B, C, D

while (victim page not found) do:
if (used bit of the current page ==0)

replace current page
else

reset used bit of the current page
end if
move hand to the next

end while

MIT 6.191 Fall 2023 L18-November 9, 2023

CLOCK Page Replacement Algorithm

17

▪ CLOCK approximates LRU by finding the not recently used
page
▪ It maintain a circular list of pages resident in memory
▪ Each page has a use bit that is set to 1 when the page is

accessed
▪ The clock hand points to the potential

victim. When a page fault occurs:
A

C B

Use bit=0

Use bit=1Use bit=1#Physical pages: 3
Access pattern: A, B, C, D

while (victim page not found) do:
if (used bit of the current page ==0)

replace current page
else

reset used bit of the current page
end if
move hand to the next

end while

MIT 6.191 Fall 2023 L18-November 9, 2023

CLOCK Page Replacement Algorithm

18

▪ CLOCK approximates LRU by finding the not recently used
page
▪ It maintain a circular list of pages resident in memory
▪ Each page has a use bit that is set to 1 when the page is

accessed
▪ The clock hand points to the potential

victim. When a page fault occurs:
A

C B

Use bit=0

Use bit=0Use bit=1#Physical pages: 3
Access pattern: A, B, C, D

while (victim page not found) do:
if (used bit of the current page ==0)

replace current page
else

reset used bit of the current page
end if
move hand to the next

end while

MIT 6.191 Fall 2023 L18-November 9, 2023

CLOCK Page Replacement Algorithm

19

▪ CLOCK approximates LRU by finding the not recently used
page
▪ It maintain a circular list of pages resident in memory
▪ Each page has a use bit that is set to 1 when the page is

accessed
▪ The clock hand points to the potential

victim. When a page fault occurs:
A

C B

Use bit=0

Use bit=0Use bit=0#Physical pages: 3
Access pattern: A, B, C, D

while (victim page not found) do:
if (used bit of the current page ==0)

replace current page
else

reset used bit of the current page
end if
move hand to the next

end while

MIT 6.191 Fall 2023 L18-November 9, 2023

CLOCK Page Replacement Algorithm

20

▪ CLOCK approximates LRU by finding the not recently used
page
▪ It maintain a circular list of pages resident in memory
▪ Each page has a use bit that is set to 1 when the page is

accessed
▪ The clock hand points to the potential

victim. When a page fault occurs:
D

C B

Use bit=1

Use bit=0Use bit=0#Physical pages: 3
Access pattern: A, B, C, D

while (victim page not found) do:
if (used bit of the current page ==0)

replace current page
else

reset used bit of the current page
end if
move hand to the next

end while

MIT 6.191 Fall 2023 L18-November 9, 2023

Pros and Cons

21

▪ LRU Algorithm:
▪ Pros: A good approximation of the optimal page

replacement algorithm.
▪ Cons: LRU can be expensive to implement in hardware or

software, as it requires maintaining a list or similar data
structure to track the access order of pages.

▪ CLOCK Algorithm:
▪ Pros: More efficient to implement than LRU, only requires a

circular buffer and a single reference bit per page
▪ Cons: It does not maintain a precise ordering of pages

based on access times

MIT 6.191 Fall 2023 L18-November 9, 2023

Trade-off of Different Page Sizes

22

▪ Different page sizes introduce different trade-off for
▪ Size of page tables
▪ Smaller page size -> larger page table

▪ #page fault with applications
▪ Smaller page size -> more page fault

▪ Internal fragmentation
▪ Smaller page size -> less internal fragmentation

▪ Time to start a process
▪ Smaller page size -> quicker time to start small process

▪ TLB coverage/TLB miss rate
▪ Smaller page size -> low coverage and higher TLB miss

rate
▪ General trend toward larger pages: 512 B -> 64KB (1978 ->

2000)

Reference: Stanford EE108b

MIT 6.191 Fall 2023 L18-November 9, 2023

Page Sharing

23

▪ Sharing pages allows mapping multiple pages to the same
physical page

▪ Useful in many circumstances
▪ Multiprocessing applications that need to share data.
▪ Sharing read only data for applications, OS, etc.

Reference: Stanford EE108b

MIT 6.191 Fall 2023 L18-November 9, 2023

Page Sharing and Memory Mapping

24

▪ Process1 creates shared memory object with shm_open()
▪ Map the shared memory object to its virtual memory with

mmap()

Physical memory

1. shm_open(“/obj”, O_CREATE…)

2. mmap()
Shared object

Process 1
virtual memory

MIT 6.191 Fall 2023 L18-November 9, 2023

Page Sharing and Memory Mapping

25

▪ Process2 accesses the shared memory object with the name
▪ Map the shared memory object to its virtual memory

▪ Note: the virtual memory addresses can be different for
process 1 and 2.

1. shm_open(“/obj”, O_RDONLY…)

Process 1
virtual memory Physical memory

2. mmap()

Shared object

Process 2
virtual memory

MIT 6.191 Fall 2023 L18-November 9, 2023

Copy-on-Write

26

▪ Copy-on-Write (COW)
▪ Process1 and Process2 initially share the same pages
▪ Only copy page if one of the processes wants to modify

some page
▪ Pros:
▪ Fast process creation
▪ Efficient memory usage: Processes may share most

data (e.g., .text code segment)
▪ Cons:
▪ Increase system complexity

MIT 6.191 Fall 2023 L18-November 9, 2023

Copy-on-Write: Example

27

▪ Process1 creates a child process
▪ The child process gets a copy of the parent’s page table
▪ All pages now are read-only
▪ Both processes can access the same copy of physical memory

Child process
page table

Both page tables point to the same physical pages!

Child process
virtual memory

Process 1
virtual memory Physical memoryProcess 1

page table

R

R

MIT 6.191 Fall 2023 L18-November 9, 2023

Copy-on-Write: Example

28

▪ What if the child process writes the page?
▪ Protection fault
▪ OS copies the page and maps is to the child’s page table

▪ Child process modifies its private copy

Child process
page tableChild process

virtual memory

Process 1
virtual memory Physical memoryProcess 1

page table

R

R/W

Copy

MIT 6.191 Fall 2023 L18-November 9, 2023

Copy-on-Write: Example

29

▪ What if the parent process writes the page?
▪ Protection fault
▪ OS copies the page and maps is to the parent’s page table

▪ Each process modifies its private copy!

Child process
page tableChild process

virtual memory

Process 1
virtual memory Physical memoryProcess 1

page table

R/W

R/W Copy

MIT 6.191 Fall 2023 L18-November 9, 2023

Protection and Isolation

▪ Valid page
▪ Check access rights (R, W, X) against access type
▪ Generate physical address if allowed
▪ Generate a protection fault if illegal access

▪ Invalid page
▪ Page is not currently mapped and a page fault is generated

▪ Faults are handled by the operating system
▪ Protection fault is often a program error and the program

should be terminated
▪ Page fault requires that a new frame be allocated, the page

entry is marked valid, and the instruction restarted
▪ Page table has mapping from physical address to virtual

address and tracks used pages

30
Reference: Stanford EE108b

MIT 6.191 Fall 2023 L18-November 9, 2023

Summary

▪ TLBs make paging efficient by caching the page table

▪ Trade-off of different page sizes
▪ Size of page table, #page fault, fragmentation, TLB

coverage (TLB miss rate)

▪ Hierarchical page table
▪ Page table memory is proportional to the amount of

memory used by process

▪ Page replacement algorithms:
▪ LRU: A good approximation of the optimal page

replacement algorithm
▪ CLOCK: A more efficient to implementation than LRU

▪ Page sharing and copy-on-write
▪ Pages can be shared by processes

31

MIT 6.191 Fall 2023November 9, 2023 L18-

Thank you!

Next lecture: I/O and Exceptions

32

