
Transient Execution Attacks
Mengjia Yan
Spring 2024

Outline

• What is speculative execution?

• How does Meltdown work?
• We will connect the dots between a hardware optimization and a software

optimization.

• How does Spectre and its variations work?
• Let’s try to see through these variations and understand the fundamental

problem.

2

Recap: 5-stage Pipeline

3

Write-Back
(WB)

Decode, Reg. Fetch
(ID)

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wdrd2

we

Execute
(EX)

ALU

Memory
(MA)

addr

wdata

rdata
Data
Memory

we

I-Fetch
(IF)

0x4
Add

addr
rdata

Inst.
Memory

IRPC

Recap: 5-stage Pipeline

• In-order execution:
• Execute instructions according to the program order
• One instruction max per pipeline stage

4

time t0 t1 t2 t3 t4 t5 t6 t7
instruction1 IF1 ID1 EX1 MA1 WB1
instruction2 IF2 ID2 EX2 MA2 WB2
instruction3 IF3 ID3 EX3 MA3 WB3
instruction4 IF4 ID4 EX4 MA4 WB4
instruction5 IF5 ID5 EX5 MA5 WB5

Write-Back
(WB)

I-Fetch
(IF)

Execute
(EX)

Decode, Reg. Fetch
(ID)

Memory
(MA)

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Ext

0x4
Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

ws
wdrd2

we

IRPC

Build High-Performance Processors

Example #1:

FMUL f1, f2, f3 ; 10 cycles
ADD r4, r4, r1 ; 1 cycle -> repeat 10 times
……

Example #2:

LD r3, 0(r2) ; 1-100 cycles
ADD r4, r4, r1 ; 1 cycle -> repeat 10 times
……

5

Instruction-Level
Parallelism (ILP)

when there is NO data-dependency
or control-flow dependency

Technique #1: Add More Functional Units

1: FMUL f1, f2, f3

2: ADD r4, r4, r1

3: ADD r4, r4, r1
6

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Regs

Technique #1: Add More Functional Units

7

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

Regs

1: FMUL f1, f2, f3

2: ADD r4, r4, r1

3: ADD r4, r4, r1

Technique #1: Add More Functional Units

1: FMUL f1, f2, f3 ; f1=f2*f3

2: FDIV f5, f1, f4 ; f5=f1/f4

8

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

RegsNeed a bookkeeping
mechanism to track

dependency

Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU
Mem
Fadd
Fmul
Fdiv

9

Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU
Mem
Fadd
Fmul Y f1 f2 f3
Fdiv

10

1: FMUL f1, f2, f3

2: ADD r4, r4, r1 No dependency, feel free to issue the ADD

Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU
Mem
Fadd
Fmul Y f1 f2 f3
Fdiv

11

1: FMUL f1, f2, f3

2: FDIV f5, f1, f4

1: FMUL f1, f2, f3 ; 10 cycles

2: FADD f1, f4, f5 ; 4 cycles

Read-after-Write (RAW) Write-after-Write (WAW)

Technique #2: Scoreboard

• Upon issue an instruction, check:
1. Whether any ongoing instructions will generate values for my source registers
2. Whether any ongoing instructions will modify my destination register

We call such a processor: in-order issue, out-of-order completion.

A problem: how to handle interrupts/exceptions?

12

Exception in OoO Processors: Example #1

1 2 3 4 5 6 7 8

1: LD IF ID Issue ALU Mem Mem Mem Exception

2: ADD IF ID Issue ALU WB

13

1: LD r3, 0(r2) ; Exception in 3 cycles

2: ADD r4, r4, r1 ; 1 cycle Need to delay WB

Exception in OoO Processors: Example #2

1 2 3 4 5 6 7 8

1: FMUL IF ID Issue FMUL FMUL FMUL FMUL …

2: LD IF ID Issue ALU Mem Exception

14

1: FMUL f1, f2, f3 ; 10 cycles

2: LD r3, 0(r2) ; Exception in 1 cycle Need to delay
Exception

Technique #3: In-order Commit

15

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

Regs

Re
or

de
r

B
uf

fe
r

Commit

In-order

Another Way to Draw It

16

Fetch Decode

Execute

CommitReorder Buffer

In-order In-orderOut-of-order

Kill
Kill Kill

Exception?Inject handler PC

To know more advanced out-of-order (OoO) features, take 6.5900 [6.823]

Re-examine Examples With In-order Commit

17

1: LD r3, 0(r2) ; Exception in 3 cycles

2: ADD r4, r4, r1 ; 1 cycle

1: FMUL f1, f2, f3 ; 10 cycles

2: LD r3, 0(r2) ; Exception in 1 cycle

Recap: Page Mapping

18

Physical Address Space
 (limited by DRAM size)4KB

4KB

VA
PA

Page Table
per process

Process 1

Process 2

4KB

4KB

Mapping Kernel Pages

19

Physical Address Space
 (limited by DRAM size)4KB

4KB

VA
PA

Page Table
per process

Process 1

Process 2

4KB

4KB

Kernel
4KB

4KB

Jumping Between User and Kernel Space

• Key challenge: need to make sure we use the correct page table
• CR3 (in x86) or satp (in RISCV) stores the page table physical address

20

Process 1

4KB

Kernel
4KB

A Performance Optimization

• Context switch overhead:
• Page table changes, so in many processors, we need to flush TLB

• But sometimes, we only go to kernel to do some simple things
• E.g., getpid()

• The optimization: map kernel address into user space in a secure way

21

Map Kernel Pages Into User Space

• What will happen if accessing kernel
addresses in user mode?
• Protection fault

22

Virtual memory

Kernel pages

0x00000000

0xffffffff

User pages

Page Table
A Page Table Entry

PPN Permission:
Kernel?
R/W/X?

ROB head

… LD2

LD1 …
Meltdown

• Meltdown explores the combined effects of two optimizations
• Hardware optimization: out-of-order execution
• Software optimization: mapping kernel addresses into user space

• Let’s analyze the timing carefully
• Attack outcome: user space applications can read arbitrary kernel data

23

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Meltdown Timing

24

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Ld1:

Ld2:

start
execution

finish
execution

address
translation

commit -> exception

get secret
in a register

Case 1: Fail. Ld2 is squashed before the
corresponding memory access is issued.

Ld1:

Ld2:

start
execution

finish
execution

address
translation

commit -> exception

get secret
in a register

Case 2: Attack works. Ld2’s request is sent
out before the instruction is squashed.

L2 issues its access

Meltdown w/ Flush+Reload

1. Setup: Attacker allocates probe_array, with 256 cache lines.
Flushes all its cache lines

2. Transmit: Attacker executes

3. Receive: After handling protection fault, attacker performs cache
side channel attack to figure out which line of probe_array is
accessed à recovers byte

25

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Meltdown Mitigations
• Stop one of the optimizations should be sufficient
• SW: Do not let user and kernel share address space (KPTI) -> broken by

several groups (e.g., EntryBleed)
• HW: Stall speculation; Register poisoning

• We generally consider Meltdown as a design bug

26

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Will Liu, EntryBleed, https://www.willsroot.io/2022/12/entrybleed.html?m=1

Branch Prediction
• Motivation: control-flow penalty
• Modern processors may have > 10 pipeline stages between

next PC calculation and branch resolution!

27

Fetch Decode

Execute

CommitReorder Buffer

In-order In-orderOut-of-order

Kill
Kill Kill

Exception?Inject handler PC Mis-prediction?

Branch Prediction

• Naïve approach: PC+4

• More advanced, predict two things:
• Direction of a branch (whether a branch is taken or not)
• The target address of a branch

28

Branch Direction Predictor

• 1-bit predictor
• If taken, set the bit to 1
• If not-taken, set the bit to 0
• Predict using this bit

• 2-bit predictor … N-bit predictor

• More advanced:
• Use global and local information together
• Use Neural networks…

29

O
n not-taken è

ç
 O

n taken

1 1 Strongly taken

1 0 Weakly taken

0 1 Weakly not-taken

0 0 Strongly not-taken

Spectre Variant 1 – Exploit Branch Condition
• Consider the following kernel code, e.g., in a system call

30

Br: if (x < size_array1) {

Ld1: secret = array1[x]

Ld2: y = array2[secret*64]

 }

Attacker to read arbitrary memory:
1. Setup: Train branch predictor
2. Transmit: Trigger branch misprediction; &array1[x] maps to some desired
kernel address
3. Receive: Attacker probes cache to infer which line of array2 was fetched

ROB head

… LD2

LD1

Br …

Always malicious?
No. It may be a benign misprediction.
We do not consider Spectre as a bug.

More Branch Predictors
• How to predict the target address of a branch?
• jal <label> and blt r1, r2, <label>
• jalr <r1>
• ret

• Two structures:
• Branch Target Buffer (BTB)
• RAS (Return Address Stack)

31

2k-entry direct-mapped BTB
(can also be associative)

PC

k

valid target

ValidEntry PC
predicted
target PC

match

=

Spectre Variant 2 – Exploit Branch Target

32

Br: if (…) {

… }

…

Ld1: secret = array1[x]

Ld2: y = array2[secret*4096]

Train BTB properly à Execute arbitrary gadgets speculatively

oxfff110

oxfff234

General Attack Schema

33

AttackerVictim

Access secret transmit (secret) recv()
Channel

Apply the General Attack Scheme

34

r = 1

for i = n-1 to 0 do

 r = sqr(r)

 r = mod(r, m)

 if ei == 1 then

 r = mul(r, b)

 r = mod(r, m)

 end

end

The RSA Square-and-Multiply
Exponentiation example.
Attackers aim to leak e

Which is access
operation?

Which is transmit
operation?

Apply the General Attack Scheme

35

Which is access
operation?

Which is transmit
operation?

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Br: if (x < size_array1) {

Ld1: secret = array1[x]

Ld2: y = array2[secret*64]

 }

Br: if (…) {

… }

…

Ld1: secret = array1[x]

Ld2: y = array2[secret*4096]

General Attack Schema

• Traditional (non-transient) attacks
• Data in-use

• Transient attacks: can leak data-at-rest
• Meltdown = transient execution + deferred exception handling
• Spectre = transient execution on wrong paths

36

“Easy” to fix

Hard to fix

Hard to fix

AttackerVictim

Access secret transmit (secret) recv()
Channel

Next: Mitigations

