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 What is speculative execution? FORESHADOW

e How does Meltdown work?

* We will connect the dots between a hardware optimization and a software
optimization.

* How does Spectre and its variations work?

* Let’s try to see through these variations and understand the fundamental
problem.



I Recap: 5-stage Pipeline
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Recap: 5-stage Pipeline
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* In-order execution:

e Execute instructions according to the program order
* One instruction max per pipeline stage

time t0O t1 t2 t3 |t4 |t5 t6 t7
instructionl IF, ID; EX; MA;lWB;,

instruction4 IF, | ID4 |EX4s MA4 WB4
instruction5 IFs |IDs EXs MAs WBs




Build High-Performance Processors

Example #1:
Instruction-Level

FMUL f1, f2, 3 ; 10 cycles Parallelism (ILP)
ADD r4, r4, rl ; 1 cycle -> repeat 10 -

when there is NO data-dependency
Example #2: or control-flow dependency

LD r3, 0(r2) ; 1-100 cycles
ADD r4, r4, rl ; 1 cycle -> repeat 10 times



I Technique #1: Add More Functional Units
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Technique #1: Add More Functional Units

‘ IF * ID o Issue

ALU

Mem \

Need a bookkeeping Regs
mechanism to track
dependency

1: FMUL 1, 2, 3 ; f1=f2%f3
N~

2: FDIV f5, f1, f4 ; f5=f1/f4
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I Technique #2: Scoreboard
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I Technique #2: Scoreboard

Functional Unit

Busy?

Dest Reg

Srcl Reg

Src2 Reg

Int ALU
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1
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1: FMUL f1, f2, 3
2: ADD r4, r4, rl

No dependency, feel free to issue the ADD
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I Technique #2: Scoreboard

Functional Unit | Busy?

Dest Reg

Srcl Reg Src2 Reg

Int ALU

Mem

Fadd

Fmul Y

1

f2 f3

Fdiv

Read-after-Write (RAW)

1:
2:

FMUL f1, f2, f3
FDIV f5, f1, f4

Write-after-Write (WAW)

1: FMUL f1, f2, f3 ; 10 cycles
2: FADD f1, f4, 5 ; 4 cycles




Technique #2: Scoreboard

* Upon issue an instruction, check:
1. Whether any ongoing instructions will generate values for my source registers
2. Whether any ongoing instructions will modify my destination register

We call such a processor: in-order issue, out-of-order completion.

A problem: how to handle interrupts/exceptions?
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Exception in 00O Processors: Example #1

1: LD r3, 0(r2) ; Exception in 3 cycles

2: ADD r4, r4, r1 ; 1 cycle Need to delay WB

1 2 3 4 5 6 ’ 8
@
1: LD IF ID Issue ALU Mem Meme Mem  Exception

2: ADD |F ID Issue ALU WB
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Exception in OoO Processors: Example #2

1: FMUL f1, f2, f3 ; 10 cycles

2: LD r3, o(r2) ; Exception in 1 cyc Need to delay
Exception

1 2 3 4 5

1: FMUL IF ID Issue FMUL FMUL FMUL FMUL

2: LD IF ID Issue  ALU Mem  Exception
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I Technique #3: In-order Commit
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I Another Way to Draw It

In-order Out-of-order In-order
Fetch " Decode ——| Reorder Buffer |——| Commit
\ -
Kill
Exe

Inject handler PC

To know more advanced out-of-order (O00) features, take 6.5900 [6.823]



Re-examine Examples With In-order Commit

1: LD r3, 0(r2) Exception in 3 cycles

o o

2: ADD r4, r4, ril ; 1 cycle

1: FMUL f1, 2, 3 10 cycles

@ o

2: LD r3, 0(r2) Exception in 1 cycle

o o
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I Recap: Page Mapping

Process 1

Page Table Physical Address Space
4KB per process (limited by DRAM size)
VA
PA
Process 2
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I Mapping Kernel Pages

Process 1
4KB Page Table Physical Address Space
hel PTOTesS (limited by DRAM size)
VA
PA
Process 2 e
4KB \
4KB
Kernel > 4KB
4KB




Jumping Between User and Kernel Space

* Key challenge: need to make sure we use the correct page table
* CR3 (in x86) or satp (in RISCV) stores the page table physical address

<

Process 1

4KB

Kernel (

4KB




A Performance Optimization

* Context switch overhead:
* Page table changes, so in many processors, we need to flush TLB

* But sometimes, we only go to kernel to do some simple things
e E.g., getpid()

* The optimization: map kernel address into user space in a secure way

21



I Map Kernel Pages Into User Space

0x00000000

OxXFFFFFFFf

Virtual memory

Kernel pages

User pages

A Page Table Entr
Page Table 5 Y

PPN Permission:
Kernel?
R/W/X?

* What will happen if accessing kernel
addresses in user mode?

* Protection fault
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Meltdown

* Meltdown explores the combined effects of two optimizations
* Hardware optimization: out-of-order execution
» Software optimization: mapping kernel addresses into user space

* Let’s analyze the timing carefully

* Attack outcome: user space applications can read arbitrary kernel data
ROB head

Ldl: uint8 t secret = *kernel address;
Ld2: unit8 t dummy = probe array[secret*64];

cai
a1
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I Meltdown Timing

Case 1: Fail. Ld2 is squashed before the
corresponding memory access is issued.

Ldl: uint8 t secret = *kernel address;
Ld2: unit8 t dummy = probe array[secret*64];

Case 2: Attack works. Ld2’s request is sent
out before the instruction is squashed.

start finish start finish
execution execution commit -> exception execution execution commit -> exception
Ld1: —O O—e > Ld1: —O O | WY
address A ot cret address A
translation 5 . translation _getsecret
in a register in a register
Ld2: > Ld2: O >

L2 issues its access
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Meltdown w/ Flush+Reload

1. Setup: Attacker allocates probe array, with 256 cache lines.
Flushes all its cache lines

2. Transmit: Attacker executes

Ldl: uint8 t secret = *kernel address;
Ld2: unit8 t dummy = probe array[secret*64];

3. Receive: After handling protection fault, attacker performs cache
side channel attack to figure out which line of probe _array is
accessed = recovers byte
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Meltdown Mitigations

 Stop one of the optimizations should be sufficient

 SW: Do not let user and kernel share address space (KPTI) -> broken by
several groups (e.g., EntryBleed)

 HW: Stall speculation; Register poisoning

Ldl: uint8 t secret = *kernel address;
Ld2: unit8 t dummy = probe array[secret*64];

* We generally consider Meltdown as a design bug

Will Liu, EntryBleed, https.//www.willsroot.io/2022/12/entrybleed.html?m=1
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Branch Prediction

* Motivation: control-flow penalty

 Modern processors may have > 10 pipeline stages between
next PC calculation and branch resolution!

In-order Out-of-order In-order

Fetch | Decode —| Reorder Buffer }—— Commit

B
Kill

/
Exe

is-predictior

Inject handler PC




I Branch Prediction

* Naive approach: PC+4

* More advanced, predict two things:
 Direction of a branch (whether a branch is taken or not)
* The target address of a branch
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Branch Direction Predictor

 1-bit predictor
* |f taken, set the bitto 1
* |If not-taken, set the bitto O
* Predict using this bit

e 2-bit predictor ... N-bit predictor

* More advanced:
» Use global and local information together
e Use Neural networks...

29



Spectre Variant 1 — Exploit Branch Condition

* Consider the following kernel code, e.g., in a syste Always malicious?
No. It may be a benign misprediction.

Tpe S (< eime srrepa) We do not consider Spectre as a bug.

Ld1: secret = arrayl[x] ROB head

y

Ld2: y = array2[secret*64]

id

Attacker to read arbitrary memory:

1. Setup: Train branch predictor

2. Transmit: Trigger branch misprediction; &arrayl[ x| maps to some desired
kernel address

3. Receive: Attacker probes cache to infer which line of array2 was fetched
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I More Branch Predictors

* How to predict the target address of a branch?

« jal <label> and blt r1, r2, <label> 2“-entry direct-mapped BTB
(can also be associative)

e jalr <rl1> -
predicted
e ret PC Entry PC Valid  target PC

* Two structures:

* Branch Target Buffer (BTB) K

* RAS (Return Address Stack)

C;D

match valid target



I Spectre Variant 2 — Exploit Branch Target

oxfff110 | Br: if (..) {

oxfff234 | Ld1l: secret =

Ld2: y = array2[secret*4096 ]

Train BTB properly = Execute arbitrary gadgets speculatively
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I General Attack Schema

Victim

Access secret transmit (secret)

% »(l) Channel
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Apply the General Attack Scheme

The RSA Square-and-Multiply
Exponentiation example.

Attackers aim to leak e

Which is access
operation?
Which is transmit
operation?

r =

1

for i = n-1 to 0 do

end

r = sqr(r)

r = mod(r, m)
if e; == 1 then

r = mul(r, b)

r\

mod(r, m)

end
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I Apply the General Attack Scheme

Which is access

------ operation?
Ldl: uint8 t secret = *kernel address; Which is transmit
Ld2: unit8 t dummy = probe array[secret*64]; _

operation?
Br: if (x < size arrayl) { Br: if (..) {
Ld1: secret = arrayl[x] - }
Ld2: y = array2[secret*64]

} Ldl: secret =
Ld2: y = array2[secret*4096 ]




I General Attack Schema

Victim

Access secret transmit (secret)

»Cg % Channel

* Traditional (non-transient) attacks

e Data in-use

* Transient attacks: can leak data-at-rest

* Meltdown = transient execution + deferred exception handling “Easy” to fix
* Spectre = transient execution on wrong paths [FEPEEEREY
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Next: Mitigations
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