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Outline

• What is speculative execution?

• How does Meltdown work?
• We will connect the dots between a hardware optimization and a software 

optimization.

• How does Spectre and its variations work?
• Let’s try to see through these variations and understand the fundamental 

problem.
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Recap: 5-stage Pipeline
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Recap: 5-stage Pipeline

• In-order execution:
• Execute instructions according to the program order
• One instruction max per pipeline stage
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time  t0 t1 t2 t3 t4 t5 t6 t7 . . . .
instruction1 IF1 ID1 EX1 MA1 WB1
instruction2  IF2 ID2 EX2 MA2 WB2
instruction3   IF3 ID3 EX3 MA3 WB3
instruction4    IF4 ID4 EX4 MA4 WB4
instruction5     IF5 ID5 EX5 MA5 WB5
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Build High-Performance Processors

Example #1:

FMUL f1, f2, f3  ; 10 cycles
ADD  r4, r4, r1  ; 1 cycle  -> repeat 10 times
……

Example #2:

LD  r3, 0(r2)   ; 1-100 cycles 
ADD r4, r4, r1  ; 1 cycle -> repeat 10 times
……

5

Instruction-Level 
Parallelism (ILP)

when there is NO data-dependency
or control-flow dependency



Technique #1: Add More Functional Units

1: FMUL f1, f2, f3 

2: ADD  r4, r4, r1  

3: ADD  r4, r4, r1
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Technique #1: Add More Functional Units
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1: FMUL f1, f2, f3 

2: ADD  r4, r4, r1  

3: ADD  r4, r4, r1



Technique #1: Add More Functional Units

1: FMUL f1, f2, f3 ; f1=f2*f3

2: FDIV f5, f1, f4 ; f5=f1/f4
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Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU
Mem
Fadd
Fmul
Fdiv

9



Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU
Mem
Fadd
Fmul Y f1 f2 f3
Fdiv
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1: FMUL f1, f2, f3 

2: ADD  r4, r4, r1  No dependency, feel free to issue the ADD



Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU
Mem
Fadd
Fmul Y f1 f2 f3
Fdiv
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1: FMUL f1, f2, f3 

2: FDIV f5, f1, f4

1: FMUL f1, f2, f3 ; 10 cycles

2: FADD f1, f4, f5 ; 4 cycles

Read-after-Write (RAW) Write-after-Write (WAW)



Technique #2: Scoreboard

• Upon issue an instruction, check:
1. Whether any ongoing instructions will generate values for my source registers
2. Whether any ongoing instructions will modify my destination register

We call such a processor: in-order issue, out-of-order completion.

A problem: how to handle interrupts/exceptions?
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Exception in OoO Processors: Example #1

1 2 3 4 5 6 7 8

1: LD IF ID Issue ALU Mem Mem Mem Exception

2: ADD IF ID Issue ALU WB
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1: LD  r3, 0(r2)   ; Exception in 3 cycles 

2: ADD r4, r4, r1  ; 1 cycle Need to delay WB



Exception in OoO Processors: Example #2

1 2 3 4 5 6 7 8

1: FMUL IF ID Issue FMUL FMUL FMUL FMUL …

2: LD IF ID Issue ALU Mem Exception
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1: FMUL f1, f2, f3 ; 10 cycles

2: LD  r3, 0(r2)   ; Exception in 1 cycle Need to delay 
Exception



Technique #3: In-order Commit
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Another Way to Draw It
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To know more advanced out-of-order (OoO) features, take 6.5900 [6.823]



Re-examine Examples With In-order Commit

17

1: LD  r3, 0(r2)   ; Exception in 3 cycles 

2: ADD r4, r4, r1  ; 1 cycle

1: FMUL f1, f2, f3 ; 10 cycles

2: LD  r3, 0(r2)   ; Exception in 1 cycle



Recap: Page Mapping
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Mapping Kernel Pages
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Jumping Between User and Kernel Space

• Key challenge: need to make sure we use the correct page table
• CR3 (in x86) or satp (in RISCV) stores the page table physical address
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A Performance Optimization

• Context switch overhead:
• Page table changes, so in many processors, we need to flush TLB

• But sometimes, we only go to kernel to do some simple things
• E.g., getpid()

• The optimization: map kernel address into user space in a secure way
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Map Kernel Pages Into User Space

• What will happen if accessing kernel 
addresses in user mode?
• Protection fault
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Virtual memory

Kernel pages

0x00000000

0xffffffff

User pages

Page Table
A Page Table Entry

PPN Permission:
Kernel?
R/W/X?



ROB head

… LD2

LD1 …
Meltdown

• Meltdown explores the combined effects of two optimizations
• Hardware optimization: out-of-order execution
• Software optimization: mapping kernel addresses into user space

• Let’s analyze the timing carefully
• Attack outcome: user space applications can read arbitrary kernel data
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……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];



Meltdown Timing
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……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Ld1: 

Ld2: 

start
execution

finish
execution

address
translation

commit -> exception

get secret 
in a register

Case 1: Fail. Ld2 is squashed before the 
corresponding memory access is issued.

Ld1: 

Ld2: 

start
execution

finish
execution

address
translation

commit -> exception

get secret
in a register

Case 2: Attack works. Ld2’s request is sent 
out before the instruction is squashed.

L2 issues its access



Meltdown w/ Flush+Reload

1. Setup: Attacker allocates probe_array, with 256 cache lines. 
Flushes all its cache lines

2. Transmit: Attacker executes

3. Receive: After handling protection fault, attacker performs cache 
side channel attack to figure out which line of probe_array is 
accessed à recovers byte
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……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];



Meltdown Mitigations
• Stop one of the optimizations should be sufficient
• SW: Do not let user and kernel share address space (KPTI) -> broken by 

several groups (e.g., EntryBleed)
• HW: Stall speculation; Register poisoning

• We generally consider Meltdown as a design bug
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……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Will Liu, EntryBleed, https://www.willsroot.io/2022/12/entrybleed.html?m=1



Branch Prediction
• Motivation: control-flow penalty
• Modern processors may have > 10 pipeline stages between 

next PC calculation and branch resolution!
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Branch Prediction

• Naïve approach: PC+4

• More advanced, predict two things:
• Direction of a branch (whether a branch is taken or not)
• The target address of a branch
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Branch Direction Predictor

• 1-bit predictor
• If taken, set the bit to 1
• If not-taken, set the bit to 0
• Predict using this bit

• 2-bit predictor … N-bit predictor

• More advanced:
• Use global and local information together
• Use Neural networks…
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Spectre Variant 1 – Exploit Branch Condition
• Consider the following kernel code, e.g., in a system call
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Br:  if (x < size_array1) {

Ld1:      secret = array1[x]

Ld2:    y = array2[secret*64]

     }

Attacker to read arbitrary memory:
1. Setup: Train branch predictor
2. Transmit: Trigger branch misprediction; &array1[x] maps to some desired 
kernel address
3. Receive: Attacker probes cache to infer which line of array2 was fetched

ROB head

… LD2

LD1

Br …

Always malicious?
No. It may be a benign misprediction.
We do not consider Spectre as a bug.



More Branch Predictors
• How to predict the target address of a branch?
• jal <label> and blt r1, r2, <label>
• jalr <r1>
• ret

• Two structures:
• Branch Target Buffer (BTB)
• RAS (Return Address Stack)
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Spectre Variant 2 – Exploit Branch Target
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Br: if (…) {

…      }

…

Ld1: secret = array1[x]

Ld2: y = array2[secret*4096]

Train BTB properly à Execute arbitrary gadgets speculatively

oxfff110

oxfff234



General Attack Schema
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AttackerVictim

Access secret transmit (secret) recv()
Channel



Apply the General Attack Scheme
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r = 1

for i = n-1 to 0 do 

 r = sqr(r) 

 r  = mod(r, m)

 if ei == 1 then 

  r = mul(r, b)

  r = mod(r, m)

 end 

end 

The RSA Square-and-Multiply 
Exponentiation example.
Attackers aim to leak e

Which is access 
operation?

Which is transmit 
operation?



Apply the General Attack Scheme
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Which is access 
operation?

Which is transmit 
operation?

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Br:  if (x < size_array1) {

Ld1:      secret = array1[x]

Ld2:    y = array2[secret*64]

     }

Br: if (…) {

…      }

…

Ld1: secret = array1[x]

Ld2: y = array2[secret*4096]



General Attack Schema

• Traditional (non-transient) attacks
• Data in-use

• Transient attacks: can leak data-at-rest
• Meltdown = transient execution + deferred exception handling
• Spectre = transient execution on wrong paths
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“Easy” to fix

Hard to fix

Hard to fix
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Next: Mitigations


