Transient Execution Attacks

Mengjia Yan
Spring 2024

it

MIT

H

Outline ‘@D} @’

 What is speculative execution? FORESHADOW

e How does Meltdown work?

* We will connect the dots between a hardware optimization and a software
optimization.

* How does Spectre and its variations work?

* Let’s try to see through these variations and understand the fundamental
problem.

I Recap: 5-stage Pipeline

v we
sl 1
»rs2
I"d]. V we
LA
g — wz rd2 1 B AL addr
GPR< > rdata
Inst. -J_ N Data
Imm] Memory
Memory] Ext D o wdata
LA

I-Fetch " Decode, Reg. Fetch" Execute” Memory Write-Back
(IF) (ID) (EX) (MA) (WB)

Recap: 5-stage Pipeline

€]
»Irs
rs I
.
S A
.
: A
Inst. A
Memor []
X N

I-Fetch I pecode, Reg. Fetch' Execute’ Memory Write-Back
(IF) (ID) (EX) (MA) (WB)

* In-order execution:

e Execute instructions according to the program order
* One instruction max per pipeline stage

time t0O t1 t2 t3 |t4 |t5 t6 t7
instructionl IF, ID; EX; MA;lWB;,

instruction4 IF, | ID4 |EX4s MA4 WB4
instruction5 IFs |IDs EXs MAs WBs

Build High-Performance Processors

Example #1:
Instruction-Level

FMUL f1, f2, 3 ; 10 cycles Parallelism (ILP)
ADD r4, r4, rl ; 1 cycle -> repeat 10 -

when there is NO data-dependency
Example #2: or control-flow dependency

LD r3, 0(r2) ; 1-100 cycles
ADD r4, r4, rl ; 1 cycle -> repeat 10 times

I Technique #1: Add More Functional Units

IF

" ID

— Regs

2: ADD
3: ADD

1: FMUL f1, f2, 3

r4, r4, rl
r4, r4, rl

ALU

Mem \\\

Fadd

Fmul

Fdiv

7

WB

I Technique #1: Add More Functional Units

IF

" ID

2: ADD
3: ADD

1: FMUL f1, f2, 3

r4, r4, rl
r4, r4, rl

» Issue

ALU

Mem \\\

Regs

Fadd

Fmul

Fdiv

7

WB

Technique #1: Add More Functional Units

‘ IF * ID o Issue

ALU

Mem \

Need a bookkeeping Regs
mechanism to track
dependency

1: FMUL 1, 2, 3 ; f1=f2%f3
N~

2: FDIV f5, f1, f4 ; f5=f1/f4

Fadd

WB

Fmul

Fdiv

N\

I Technique #2: Scoreboard

Functional Unit

Busy?

Dest Reg

Srcl Reg

Src2 Reg

Int ALU

Mem

Fadd

Fmul

Fdiv

I Technique #2: Scoreboard

Functional Unit

Busy?

Dest Reg

Srcl Reg

Src2 Reg

Int ALU

Mem

Fadd

Fmul

1

f2

f3

Fdiv

1: FMUL f1, f2, 3
2: ADD r4, r4, rl

No dependency, feel free to issue the ADD

10

I Technique #2: Scoreboard

Functional Unit | Busy?

Dest Reg

Srcl Reg Src2 Reg

Int ALU

Mem

Fadd

Fmul Y

1

f2 f3

Fdiv

Read-after-Write (RAW)

1:
2:

FMUL f1, f2, f3
FDIV f5, f1, f4

Write-after-Write (WAW)

1: FMUL f1, f2, f3 ; 10 cycles
2: FADD f1, f4, 5 ; 4 cycles

Technique #2: Scoreboard

* Upon issue an instruction, check:
1. Whether any ongoing instructions will generate values for my source registers
2. Whether any ongoing instructions will modify my destination register

We call such a processor: in-order issue, out-of-order completion.

A problem: how to handle interrupts/exceptions?

12

Exception in 00O Processors: Example #1

1: LD r3, 0(r2) ; Exception in 3 cycles

2: ADD r4, r4, r1 ; 1 cycle Need to delay WB

1 2 3 4 5 6 ’ 8
@
1: LD IF ID Issue ALU Mem Meme Mem Exception

2: ADD |F ID Issue ALU WB

13

Exception in OoO Processors: Example #2

1: FMUL f1, f2, f3 ; 10 cycles

2: LD r3, o(r2) ; Exception in 1 cyc Need to delay
Exception

1 2 3 4 5

1: FMUL IF ID Issue FMUL FMUL FMUL FMUL

2: LD IF ID Issue ALU Mem Exception

14

I Technique #3: In-order Commit

IF

' ID

» Issue

ALU

Mem \\\

Regs

Fadd

Fmul

Fdiv

|

Reorder Buffer

Commit

In-order

15

I Another Way to Draw It

In-order Out-of-order In-order
Fetch " Decode ——| Reorder Buffer |——| Commit
\ -
Kill
Exe

Inject handler PC

To know more advanced out-of-order (O00) features, take 6.5900 [6.823]

Re-examine Examples With In-order Commit

1: LD r3, 0(r2) Exception in 3 cycles

o o

2: ADD r4, r4, ril ; 1 cycle

1: FMUL f1, 2, 3 10 cycles

@ o

2: LD r3, 0(r2) Exception in 1 cycle

o o

17

I Recap: Page Mapping

Process 1

Page Table Physical Address Space
4KB per process (limited by DRAM size)
VA
PA
Process 2

4KB

4KB \
4KB

I Mapping Kernel Pages

Process 1
4KB Page Table Physical Address Space
hel PTOTesS (limited by DRAM size)
VA
PA
Process 2 e
4KB \
4KB
Kernel > 4KB
4KB

Jumping Between User and Kernel Space

* Key challenge: need to make sure we use the correct page table
* CR3 (in x86) or satp (in RISCV) stores the page table physical address

<

Process 1

4KB

Kernel (

4KB

A Performance Optimization

* Context switch overhead:
* Page table changes, so in many processors, we need to flush TLB

* But sometimes, we only go to kernel to do some simple things
e E.g., getpid()

* The optimization: map kernel address into user space in a secure way

21

I Map Kernel Pages Into User Space

0x00000000

OxXFFFFFFFf

Virtual memory

Kernel pages

User pages

A Page Table Entr
Page Table 5 Y

PPN Permission:
Kernel?
R/W/X?

* What will happen if accessing kernel
addresses in user mode?

* Protection fault

22

Meltdown

* Meltdown explores the combined effects of two optimizations
* Hardware optimization: out-of-order execution
» Software optimization: mapping kernel addresses into user space

* Let’s analyze the timing carefully

* Attack outcome: user space applications can read arbitrary kernel data
ROB head

Ldl: uint8 t secret = *kernel address;
Ld2: unit8 t dummy = probe array[secret*64];

cai
a1

23

I Meltdown Timing

Case 1: Fail. Ld2 is squashed before the
corresponding memory access is issued.

Ldl: uint8 t secret = *kernel address;
Ld2: unit8 t dummy = probe array[secret*64];

Case 2: Attack works. Ld2’s request is sent
out before the instruction is squashed.

start finish start finish
execution execution commit -> exception execution execution commit -> exception
Ld1: —O O—e > Ld1: —O O | WY
address A ot cret address A
translation 5 . translation _getsecret
in a register in a register
Ld2: > Ld2: O >

L2 issues its access

24

Meltdown w/ Flush+Reload

1. Setup: Attacker allocates probe array, with 256 cache lines.
Flushes all its cache lines

2. Transmit: Attacker executes

Ldl: uint8 t secret = *kernel address;
Ld2: unit8 t dummy = probe array[secret*64];

3. Receive: After handling protection fault, attacker performs cache
side channel attack to figure out which line of probe _array is
accessed = recovers byte

25

Meltdown Mitigations

 Stop one of the optimizations should be sufficient

 SW: Do not let user and kernel share address space (KPTI) -> broken by
several groups (e.g., EntryBleed)

 HW: Stall speculation; Register poisoning

Ldl: uint8 t secret = *kernel address;
Ld2: unit8 t dummy = probe array[secret*64];

* We generally consider Meltdown as a design bug

Will Liu, EntryBleed, https.//www.willsroot.io/2022/12/entrybleed.html?m=1

26

Branch Prediction

* Motivation: control-flow penalty

 Modern processors may have > 10 pipeline stages between
next PC calculation and branch resolution!

In-order Out-of-order In-order

Fetch | Decode —| Reorder Buffer }—— Commit

B
Kill

/
Exe

is-predictior

Inject handler PC

I Branch Prediction

* Naive approach: PC+4

* More advanced, predict two things:
 Direction of a branch (whether a branch is taken or not)
* The target address of a branch

28

Branch Direction Predictor

 1-bit predictor
* |f taken, set the bitto 1
* |If not-taken, set the bitto O
* Predict using this bit

e 2-bit predictor ... N-bit predictor

* More advanced:
» Use global and local information together
e Use Neural networks...

29

Spectre Variant 1 — Exploit Branch Condition

* Consider the following kernel code, e.g., in a syste Always malicious?
No. It may be a benign misprediction.

Tpe S (< eime srrepa) We do not consider Spectre as a bug.

Ld1: secret = arrayl[x] ROB head

y

Ld2: y = array2[secret*64]

id

Attacker to read arbitrary memory:

1. Setup: Train branch predictor

2. Transmit: Trigger branch misprediction; &arrayl[x| maps to some desired
kernel address

3. Receive: Attacker probes cache to infer which line of array2 was fetched

30

I More Branch Predictors

* How to predict the target address of a branch?

« jal <label> and blt r1, r2, <label> 2“-entry direct-mapped BTB
(can also be associative)

e jalr <rl1> -
predicted
e ret PC Entry PC Valid target PC

* Two structures:

* Branch Target Buffer (BTB) K

* RAS (Return Address Stack)

C;D

match valid target

I Spectre Variant 2 — Exploit Branch Target

oxfff110 | Br: if (..) {

oxfff234 | Ld1l: secret =

Ld2: y = array2[secret*4096]

Train BTB properly = Execute arbitrary gadgets speculatively

32

I General Attack Schema

Victim

Access secret transmit (secret)

% »(l) Channel

33

Apply the General Attack Scheme

The RSA Square-and-Multiply
Exponentiation example.

Attackers aim to leak e

Which is access
operation?
Which is transmit
operation?

r =

1

for i = n-1 to 0 do

end

r = sqr(r)

r = mod(r, m)
if e; == 1 then

r = mul(r, b)

r\

mod(r, m)

end

34

I Apply the General Attack Scheme

Which is access

------ operation?
Ldl: uint8 t secret = *kernel address; Which is transmit
Ld2: unit8 t dummy = probe array[secret*64]; _

operation?
Br: if (x < size arrayl) { Br: if (..) {
Ld1: secret = arrayl[x] - }
Ld2: y = array2[secret*64]

} Ldl: secret =
Ld2: y = array2[secret*4096]

I General Attack Schema

Victim

Access secret transmit (secret)

»Cg % Channel

* Traditional (non-transient) attacks

e Data in-use

* Transient attacks: can leak data-at-rest

* Meltdown = transient execution + deferred exception handling “Easy” to fix
* Spectre = transient execution on wrong paths [FEPEEEREY

36

Next: Mitigations

\WE

