
Software-Hardware Contract
for Side Channel Defenses

Mengjia Yan
Spring 2024

Attack Examples

2

def check_password(input):

 size = len(password);

 for i in range(0,size):
 if (input [i] == password[i]):
 return ("error");

 return (“success”);

Example #1: termination time vulnerability for i = n-1 to 0 do
 r = sqr(r)
 r = r mod n

if ei == 1 then
 r = mul(r, b)
 r = r mod n
 end
end

Example #2: RSA cache vulnerability

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Example #3: Meltdown

Who to blame? Who to fix the problem?

3

These Attacks Break SW-HW Contract

4

Instruction Set
Architecture (ISA)

Software

Hardware

The contract
for functional
correctness.

Software Developer's Problem

5

Software developers need to write software
for devices with unknown design details.

>> How can I know whether the program is
secure running on different devices?

Hardware Designer’s Problem

6

Hardware designers need to design processors
for arbitrary programs.

>> How to describe what kind of programs can
run securely on my device?

Example: Termination Time Vulnerability
• How to fix it?

7

Make the computation time independent
from the secret (password)

def check_password(input):

 size = len(password);

 for i in range(0,size):
 if (input [i] != password[i]):
 return ("error");

 return (“success”);

Non-Interference Example

8

High: root password, etc.

Low: public data base,
website content

• Intuitively: not affecting
• Any sequence of low inputs will produce the same low outputs,

regardless of what the high level inputs are.

Non-Interference: A Formal Definition

• The definition of noninterference for a deterministic program P

9

∀	M1,M2, P	

	M1! = M2!	 ∧ 	 (M1,	P) →∗ M1′	 ∧ 	 (M2,	P) →∗ M2′

⟹ 	 M1!" = M2!′

Non-Interference for Side Channels

• The definition of noninterference for a deterministic program P

10

∀	M1,M2, P	

	M1! = M2!	 ∧ 	 (M1,	P)	 →∗ M1′	 ∧ 	 (M2,	P)	 →∗ M2′

⟹ 	 O1=O2

O1 O2

What should be included in the observation trace?

Instruction completion time
Addresses issued to the memory systems (for both data and instruction)

Understand the Property

Consider input as part of M
• What is ML	?
• What is MH ?
• What is O ?

11

def check_password(input):

 size = len(password);

 for i in range(0,size):
 if (input [i] == password[i]):
 return ("error");

 return (“success”);

∀	M1,M2, P	

	M1! = M2!	 ∧ 	 (M1,	P)	 →∗ M1′	 ∧ 	 (M2,	P)	 →∗ M2′

⟹ 	 O1=O2

O1 O2

Constant-Time Programming

Think about whether the statement below is true or false.

• For any public inputs, secret values, and machines, a program always takes
the same amount of time to execute.
• For any public inputs, secret values, a program always takes the same amount

of time when executing on the same machine.
• For any secret values, a program always takes the same amount of time for

the same public input when executing on the same machine.
• For any secret values, a program always takes the same amount of time for

the same input when executing on the same machine, and this holds for
arbitrary public inputs.

12

Data-oblivious/Constant-time programming

• How to deal with conditional branches/jumps?

• How to deal with memory accesses?

• How to deal with arithmetic operations: division, shift/rotation,
multiplication?

13

For details on real-world constant-time crypto, check this out:
https://www.bearssl.org/constanttime.html

Your Code

Compiler

Hardware

14

def check_password(input):

 size = len(password);

 for i in range(0,size):
 if (input [i] != password[i]):
 return ("error");

 return (“success”);

def check_password(input):

 size = len(password);

dontmatch = false;

 for i in range(0,size):

 if (input [i] != password[i]):

dontmatch = true;

return dontmatch;

15

def check_password(input):

 size = len(password);

 dontmatch = false;

 for i in range(0,size):

dontmatch |= (input [i] != password[i])

 return dontmatch;

def check_password(input):

 size = len(password);
dontmatch = false;

 for i in range(0,size):
 if (input [i] != password[i]):

dontmatch = true;

return dontmatch;

Real-world Crypto Code

From libsodium cryptographic library:

16

for (i = 0; i < n; i++)

 d |= x[i] ^ y[i];

return (1 & ((d - 1) >> 8)) - 1;

Compare two buffers x and y, if match, return 0, otherwise, return -1.

What do we assume about
the hardware here?

Examples from Cauligi et al. FaCT: A DSL for Timing-Sensitive Computation. PLDI’19

Another Example

17

From the “donna” Curve25519 implementation

for (i = 0; i < 5; ++i) {

 const limb x = swap & (a[i] ^ b[i]);

 a[i] ^= x;
 b[i] ^= x;

}

for (i = 0; i < 5; ++i)
{

 if (swap) {
 tmp = a[i];

 a[i] = b[i];
 b[i] = tmp;

 }

} swap is a mask, either 0 or 0xFFFFFFFF

Eliminate Secret-dependent Branches

• Be a master of bitmask operations

• An instruction: cmov_
• Check the state of one or more of the status flags in the EFLAGS

register (cmovz: moves when ZF=1)
• Perform a move operation if the flags are in a specified state
• Otherwise, a move is not performed (as if a NOP) and execution

continues with the instruction following the cmov instruction

18

Conditional Branches

if (secret) x = e

x = (-secret & e) | (secret - 1) & x

test secret, secret // set ZF=1 if zero
cmovz r2, r1 // r2 for x, r1 for e

19

What do we assume
about the hardware here?

(Hint: there are two.)

More Conditional Branches

20

if (secret)
 res = f1();
else
 res = f2();

r1 ← f1();
r2 ← f2();
mov r3, r1
test secret, secret
cmovz r3, r2
// res in r3

Potential problems:
• What if we have nested branches?
• What if when secret==0, f1 is not executable,

e.g., causing page fault or divide by zero?
• What if f1 or f2 needs to write to memory, perform

IO, make system calls?

Memory Accesses

• Performance overhead.
• Techniques such as ORAM can reduce

the overhead when the buffer is large

21

a = buffer[secret]

for (i=0; i<size; i++)
{
 tmp = buffer[i];
 xor secret, I //set ZF
 cmovz a, tmp
}

An Optimization

• We can reduce the redundant accesses by only accessing one byte in
each cache line.

22

offset = secret % 64;
for (i=0; i<size; i+=64)
{

index = i+offset;
 tmp = buffer[index];
 xor secret, index
 cmovz a, tmp
}

for (i=0; i<size; i++)
{
 tmp = buffer[i];
 xor secret, i
 cmovz a, tmp
}

What do we assume about
the hardware here?

OpenSSL Patches Against Timing Channel

23

Yarom et al. CacheBleed: A Timing Attack on OpenSSL Constant Time RSA.
https://faculty.cc.gatech.edu/~genkin/cachebleed/index.html

CacheBleed, an attack leaks SSL
keys via L1 cache bank conflict.

Arithmetic Operations

Subnormal floating point numbers

24

The Problem and A Solution

25

Rane et al. Secure, Precise, and Fast Floating-Point Operations on x86 Processors. USENIX’16

Single Instruction Multiple Data (SIMD)

26

Scalar code
 LI R4, 64
loop:
 L.D F0, 0(R1)
 L.D F2, 0(R2)
 ADD.D F4, F2, F0
 S.D F4, 0(R3)
 DADDIU R1, 8
 DADDIU R2, 8
 DADDIU R3, 8
 DSUBIU R4, 1
 BNEZ R4, loop

Vector code
LI VLR, 64
LV V1, R1
LV V2, R2
ADDV.D V3, V1, V2
SV V3, R3

C code
for (i=0; i<64; i++)
 C[i] = A[i] + B[i];

SIMD Hardware Implementation

Example: 4 pipelined functional units

27

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Vector code
LI VLR, 64 //length
LV V1, R1 // vec 1
LV V2, R2 // vec 2
ADDV.D V3, V1, V2
SV V3, R3

Make Floating-Point Constant Time

28

Parameters for
the actual

computation

Selected
subnormal
numbers

What do we assume
about the hardware here?

Hardware Assumption:
1. The selected subnormal number

takes the maximum length
2. SIMD returns only if the slowest

lane finishes

How shall we proceed?

• The key problem:
• No explicitly SW-HW contract for timing
• SW developers derive hardware assumptions from existing attacks and

impose implicit assumptions on the hardware.

• Some incoming efforts:
• ARM Data Independent Timing (DIT)
• Intel Data Operand Independent Timing (DOIT)

29

ARM DIT: https://developer.arm.com/documentation/ddi0601/2020-12/AArch64-Registers/DIT--Data-Independent-Timing
Intel DOIT: https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
operand-independent-timing-isa-guidance.html

So far, we have not discussed
how to deal with speculation…

30

