More Side Channel Defenses:
A Cat-and-Mouse Game

Mengjia Yan
Spring 2024

i IRTH s an

Recall Spectre v2 (BTB Injection)

; Attacker code

Branch Target Buffer (BTB)

PC predicted
Entry PC Valid target PC

Train_source:

jmp train_target

Victim_source

AN /
N

Train_target:

secret = arrayl[x]

o000
H
IOOOO

y = array2[secret*4096]

Train source Train_target

5 ----CONTEXT SWITCH---

; Victim code "\ =
Victim_source:

v

jmp rax match valid target

I Deployed Hardware Fixes: elBRS

elBRS stands for Enhanced Indirect Branch Restricted Branch Target Buffer (BTB)
Speculation => Isolate BTB entries across privilege oredicted
levels. D Entry PC Valid target PC

“x” indicates which branch injection attack vectors

should be prevented.

o000
H
ICOCC

x86

K/u |l Train_source

Train_target

User 3 User

SN

Supervisor —%—¥»| Supervisor

Guest 3 Host

v

match valid target

Barberis et al. Branch History Injection: On the Effectiveness of Hardware Mitigations Against
Cross-Privilege Spectre-v2 Attacks. USENIX’22 https.//www.vusec.net/projects/bhi-spectre-bhb/ 3

Examine the Security Property

N\

. . oo
What do we mean by isolation? | — Branch Target Buffer (BTB)
- predicted
ID Entry PC Valid target PC
* Property #1.
* Kernelspace indirect branches do not
use branch target inserted by . E .
userspace code. . . .
: | K/U |
* Property #2 (non-interference):

e Userspace code does not interfere
with Kernels;%ace indirect branch
predictions. O

Does elBRS achieve
property #27? If not,
counterexamples?

match

Same-mode misprediction

valid

target

I How Does BTB Actually Work?

* BHB: (according to past work)

Branch BHB (branch
Source history buffer)
ID
hash
N g
Kk

Branch Target Buffer (BTB)

predicted
Entry PC Valid target PC
[] ® []
® ® []
[] ® ®
[] ® ®

* A shift register which gets updated by XORing
its right most bits with the folded source and
destination address of a taken branch

match

valid

target

Branch History Injection

Branch BHB (branch
source history buffer)
ID
hash
k
Look at the property again:

* Property #2 (non-interference):

* Userspace code does not
interfere with Kernelspace
indirect branch prediction.

Branch Target Buffer (BTB)

predicted
Entry PC Valid target PC
[] ® []
® ® []
[] ® ®
[] ® ®

match

valid

target

I A Detour: Consequences due to Retpoline

Before
retpoline

jmp *%rax

After
retpoline

call set up target (1)

capture_spec: (4)
pause
lfence
jmp capture_spec

set _up_target:
mov %rax, (%rsp) (2)
ret (3)

Listing 3 Linux implementation for the Spectre v2 mitigation
before version 5.14 on Intel processors depending on eIBRS
hardware support. The shown example is taken from the
indirect jump in charge to execute the correct syscall handler

stored in the sys_call_table.
1 do_syscall_64:

2

3 mov rax, [sys 1]1_table + rax*8]
4 call

Perfect victim bran

__x86_indirect_thunk_rax:

[+

w

https://support.google.com/fags/answer/7625886

__x86_indirect_thunk_rax:

1
2

3 call

4 A: pause

5 lfence

6 jmp

7 B: mov [rsp], rax
8

ret

ch

Smp rax for in-place BTB attack

I Takeaway Messages

* Goal: communicate security property achieved by hardware defenses
* The bad example: elBRS -> unclear what exactly isolation mean...

 Alternative approaches: v .
* Approach 1: Show SW people all the HW implementation details ‘et~

 Approach 2: define new SW-HW contracts @

SW-HW Contracts for
Secure Speculation

i IRTH s an

Attempt #1: Make Speculation Invisible

 |[dea: make speculative executed instructions’ microarchitecture

effects invisible by the attacker
 Examine program examples

Secure if using
invisible speculation?

Do they follow
constant-time programming?

if (false)
sec = 1d x
dummy = 1ld sec

sec = 1d x

if (false)
dummy = 1ld sec

sec = 1d x
dummy = 1ld sec

if (false)

10

Speculative Non-interference

e Some notations

e P:adeterministic program

* Myyp: public memory and inputs

* M, : secret memory and inputs

e O: microarchitecture observation (traces)

* Property:
* if the SW does not leak under the constant-time programming model
* then the HW should ensure no more secrets leaked under speculation

Execute program sequentially,

!
vV P, Mpub: Msec, M sec, / monitor memory addresses.
_ /
IF OSeq (P: MpubrMsec) — OSeq (P» Mpub»M Sec)

THEN OSpec(P: Mpub»Msec) = OSpec(P: Mpub:Mlsec) —|-’

Execute program speculatively,

monitor memory addresses.
11

Hardware-Software Contracts for Secure Speculation; Guarnieri et al; S&P’19

Scheme #1: DoM

sec = 1d x
if (false)
dummy = 1ld sec

Insecure Baseline

o
PR

Delay-on-Miss

@Core

Hit: get data
Miss: delay

Rest of Memory System

Rest of Memory System

Efficient Invisible Speculative Execution through Selective Delay and Value Prediction; Sakalis et al; ISCA’19 12

Any problem?
Do we really achieve
speculative non-
interference here?

Scheme #2: Invisible Speculatio

Insecure Baseline Invisible Speculation %
sec = 1d x @Core @Core
if (false) o
dummy = 1d sec ¥ re I §j/isiB :
.2 L1 L | dRufilg 1
: AL
aP eV
e oD
Rest of Memory System Rest of Memory System

InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy; Yan et al; MICRO’18 13

Speculative Interference Attack

* Younger speculative loads interfere with older bound-to-commit loads.

 Many other contention structures: non-pipelined ALU, cache port, bank contention,

network-on-chip, etc. Invisible Speculation

Y = //delay s

ld y //transmitter ‘

if (false)

1d sec //interfere

Rest of Memory System

14
Speculative interference attacks: breaking invisible speculation schemes; Behnia et al; ASPLOS 21

GhostMinion

#1: Invisible Speculation

#2: Prioritize Older Instructions through Timestamps

speculative
interference
attack

GhostMinion: A Strictness-Ordered Cache System for Spectre Mitigation; Ainsworth; MICRO’21

Y = e //delay

ld y //transmitter
if (false)

1d sec //interfere

Timestamp
(based on decode time)

0

1

2

3

9

Yy

S

Core

L1

rivisible 1
| _Buffer _1

Rest of Memory System

New Attack Variant

GhostMinion prioritizes smaller timestamps

Timestamp Timestamp
(based on decode time) (based on decode time)
y = .. // delay 0 if (true) 0 | —
Olderl1d y // bound-to-commit 1 1d y // bound-to-commit 2

if (false) 2 else No Program

Order
Younger ld sec // transient 3 1d sec // transient 1
Original speculative interference attack New attack variant

Pensieve: Microarchitectural Modeling for Security Evaluation; Yang et al; ISCA’23 16

Summary: The Cat-and-Mouse Game

Spectre

InvisiSpec
Delay-on-Miss ...

Speculative interference attack

GhostMinion a

Need tools for automatically

: : : discovering vulnerabilities
New variant of speculative interference attack ;

17

More Contracts

\WE

-y

Attempt #2: Relax the Security Property

* Idea: only protect speculatively loaded data

Spectre vl

if (false)
sec = 1d x
dummy = 1ld sec

Secure if using
invisible speculation?

Secure if only protecting
speculatively loaded data?

\
v/

sec = 1d x

if (false)
dummy = 1ld sec

v/

Software sandboxing fp
°

sec = 1d x
dummy = 1ld sec

if (false)

SW needs to follow
constant-time programming

19

I STT and NDA Designs

* Draw on the board

20

I Understand the Property/Contract

Speculative non-interference: HW that can protect constant-time programs.

Execute program sequentially,

!
v P Mpub’MSGC’M Sec , / Monitor architecture registers
IF Oseq (P: MpubrMsec) — Oseq(P: Mpub:M Sec)

THEN Ospec(P» Mpub»Msec) = Ospec(Pr Mpub'Mlsec) —|-’

Execute program speculatively,
monitor memory addresses.

e

o=
Can also be used to describe the case for protecting software sandboxing... @ a

21

Summary of SW-HW Contracts

’ . .
V' P, Mpup, Msec, M sec, /Descrlbe what SW needs to achieve
—_ !/
IF Oseq (P: Mpubr Msec) — Oseq (P» Mpub: M Sec)

THEN OSpec(P; Mpub»Msec) — Ospec(Pr Mpub'Mlsec) \

Describe what HW needs to achieve for
only the SW that satisfies the IF statement

* The payoff: we can check security properties for SW and
HW independently

* Ongoing research: How to check and design according to

these properties?
22

Next: Paper Discussion

For presenters: 12 min per presentation. If you run out of time, you will
be interrupted and end up not finishing your presentation.

For the rest: please come to the class on time and participate in the Q&A.

MIT

.

