
More Side Channel Defenses:
A Cat-and-Mouse Game

Mengjia Yan
Spring 2024

Recall Spectre v2 (BTB Injection)

2

PC

k

valid target

ValidEntry PC
predicted
target PC

match

=

; Attacker code

Train_source:

 jmp train_target

 …

Train_target:

 secret = array1[x]

 y = array2[secret*4096]

 …

; ----CONTEXT SWITCH---

; Victim code

Victim_source:

jmp rax

…

Train_source Train_target1

Victim_source

Branch Target Buffer (BTB)

Deployed Hardware Fixes: eIBRS

3

valid target

ValidEntry PC
predicted
target PC

match

=

Train_source Train_target1

Branch Target Buffer (BTB)

ID

K/U

Barberis et al. Branch History Injection: On the Effectiveness of Hardware Mitigations Against
Cross-Privilege Spectre-v2 Attacks. USENIX’22 https://www.vusec.net/projects/bhi-spectre-bhb/

eIBRS stands for Enhanced Indirect Branch Restricted
Speculation => Isolate BTB entries across privilege
levels.

“x” indicates which branch injection attack vectors
should be prevented.

Examine the Security Property

What do we mean by isolation?

• Property #1:
• Kernelspace indirect branches do not

use branch target inserted by
userspace code.

• Property #2 (non-interference):
• Userspace code does not interfere

with Kernelspace indirect branch
predictions.

4

valid target

ValidEntry PC
predicted
target PC

match

=

Train_source Train_target1

Branch Target Buffer (BTB)

ID

K/U

Does eIBRS achieve
property #2? If not,
counterexamples?

Same-mode misprediction

How Does BTB Actually Work?

• BHB: (according to past work)
• A shift register which gets updated by XORing

its right most bits with the folded source and
destination address of a taken branch

5

valid target

ValidEntry PC
predicted
target PC

match

=

Train_source Train_target1

Branch Target Buffer (BTB)

ID

K/U

k

PC

Branch
Source

BHB (branch
history buffer)

hash

PC

Branch History Injection

6

valid target

ValidEntry PC
predicted
target PC

match

=

Train_source Train_target1

Branch Target Buffer (BTB)

ID

K/U

k

Branch
Source

BHB (branch
history buffer)

hash

Look at the property again:
• Property #2 (non-interference):
• Userspace code does not

interfere with Kernelspace
indirect branch prediction.

A Detour: Consequences due to Retpoline

7

Before
retpoline

jmp *%rax

After
retpoline

call set_up_target (1)

capture_spec: (4)
pause

 lfence
jmp capture_spec

set_up_target:
 mov %rax, (%rsp) (2)
 ret (3)

https://support.google.com/faqs/answer/7625886

Perfect victim branch
for in-place BTB attack

Takeaway Messages

• Goal: communicate security property achieved by hardware defenses
• The bad example: eIBRS -> unclear what exactly isolation mean…

• Alternative approaches:
• Approach 1: Show SW people all the HW implementation details

• Approach 2: define new SW-HW contracts

8

SW-HW Contracts for
Secure Speculation

Attempt #1: Make Speculation Invisible

• Idea: make speculative executed instructions’ microarchitecture
effects invisible by the attacker
• Examine program examples

10

sec = ld x
dummy = ld sec

if (false)
 ……

if (false)
 sec = ld x
 dummy = ld sec

sec = ld x

if (false)
 dummy = ld sec

Secure if using
invisible speculation?

Do they follow
constant-time programming?

Speculative Non-interference
• Some notations

• 𝑃: a deterministic program
• 𝑀!"#: public memory and inputs
• 𝑀$%& : secret memory and inputs
• 𝑂: microarchitecture observation (traces)

• Property:
• if the SW does not leak under the constant-time programming model
• then the HW should ensure no more secrets leaked under speculation

11

∀	 𝑃,𝑀!"#, 𝑀$%&, 𝑀′$%&,
IF 𝑂$%'(𝑃,𝑀!"#, 𝑀$%&) = 𝑂$%'(𝑃,𝑀!"#, 𝑀′$%&)
THEN 𝑂$!%&(𝑃,𝑀!"#, 𝑀$%&) = 𝑂$!%&(𝑃,𝑀!"#, 𝑀′$%&)

Execute program sequentially,
monitor memory addresses.

Execute program speculatively,
monitor memory addresses.

Hardware-Software Contracts for Secure Speculation; Guarnieri et al; S&P’19

Scheme #1: DoM

12

Core

L1

Rest of Memory System

Insecure Baseline

s

Delay-on-Miss

Core

L1

Rest of Memory System

ssec = ld x
if (false)
 dummy = ld sec

Hit: get data
Miss: delay

Efficient Invisible Speculative Execution through Selective Delay and Value Prediction; Sakalis et al; ISCA’19

Scheme #2: Invisible Speculation

13

Core

L1

Rest of Memory System

Insecure Baseline

s

Invisible Speculation

Core

L1

Rest of Memory System

Invisible
Buffer

ssec = ld x
if (false)
 dummy = ld sec

Any problem?
Do we really achieve

speculative non-
interference here?

InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy; Yan et al; MICRO’18

Speculative Interference Attack

14

y = …… //delay

ld y //transmitter

if (false)

 ld sec //interfere

Core

L1

Rest of Memory System

Invisible
Buffer

Invisible Speculation

MSHR

• Younger speculative loads interfere with older bound-to-commit loads.
• Many other contention structures: non-pipelined ALU, cache port, bank contention,

network-on-chip, etc.

s

s

y

Speculative interference attacks: breaking invisible speculation schemes; Behnia et al; ASPLOS’21

GhostMinion
#1: Invisible Speculation
#2: Prioritize Older Instructions through Timestamps

15

y = …… //delay

ld y //transmitter

if (false)

 ld sec //interfere

speculative
interference

attack

Core

L1

Rest of Memory System

Invisible
Buffer

MSHR

Timestamp
(based on decode time)

0

1

2

3

s
3

s
3

y
1

y
1

GhostMinion: A Strictness-Ordered Cache System for Spectre Mitigation; Ainsworth; MICRO’21

New Attack Variant

16

y = …… // delay

ld y // bound-to-commit

if (false)

 ld sec // transient

if (true)

 ld y // bound-to-commit

else

 ld sec // transient

No Program
Order

Timestamp
(based on decode time)

0

1

2

3

Timestamp
(based on decode time)

0

GhostMinion prioritizes smaller timestamps

Younger

Older 2

1

Original speculative interference attack New attack variant

Pensieve: Microarchitectural Modeling for Security Evaluation; Yang et al; ISCA’23

Summary: The Cat-and-Mouse Game

17

2018 Spectre

Speculative interference attack2020

2019 InvisiSpec
Delay-on-Miss …

2021 GhostMinion

New variant of speculative interference attack2023
Need tools for automatically
discovering vulnerabilities

More Contracts

Software sandboxing

Attempt #2: Relax the Security Property

19

sec = ld x
dummy = ld sec

if (false)
 ……

if (false)
sec = ld x

 dummy = ld sec

sec = ld x

if (false)
 dummy = ld sec

Spectre v1

Secure if using
invisible speculation?

Secure if only protecting
speculatively loaded data?

• Idea: only protect speculatively loaded data

SW needs to follow
constant-time programming

STT and NDA Designs

• Draw on the board

20

Understand the Property/Contract

21

∀	 𝑃,𝑀!"#, 𝑀$%&, 𝑀′$%&,
IF 𝑂$%'(𝑃,𝑀!"#, 𝑀$%&) = 𝑂$%'(𝑃,𝑀!"#, 𝑀′$%&)
THEN 𝑂$!%&(𝑃,𝑀!"#, 𝑀$%&) = 𝑂$!%&(𝑃,𝑀!"#, 𝑀′$%&)

Execute program sequentially,
monitor memory addresses.

Execute program speculatively,
monitor memory addresses.

Speculative non-interference: HW that can protect constant-time programs.

Can also be used to describe the case for protecting software sandboxing…

Monitor architecture registers

∀	 𝑃,𝑀!"#, 𝑀$%&, 𝑀′$%&,
IF 𝑂$%'(𝑃,𝑀!"#, 𝑀$%&) = 𝑂$%'(𝑃,𝑀!"#, 𝑀′$%&)
THEN 𝑂$!%&(𝑃,𝑀!"#, 𝑀$%&) = 𝑂$!%&(𝑃,𝑀!"#, 𝑀′$%&)

Summary of SW-HW Contracts

22

Describe what SW needs to achieve

Describe what HW needs to achieve for
only the SW that satisfies the IF statement

• The payoff: we can check security properties for SW and
HW independently
• Ongoing research: How to check and design according to

these properties?

Next: Paper Discussion

For presenters: 12 min per presentation. If you run out of time, you will
be interrupted and end up not finishing your presentation.
For the rest: please come to the class on time and participate in the Q&A.

