
Hardware Support for Memory Safety
Mengjia Yan
Spring 2024

Overview

• What attacker can do with software bugs?
• Demos, variations, real-world examples

• Hardware mitigations: what are the design tradeoffs?

2

The Problem: Software Bugs

• Low-level Language Basics
(C/C++/Assembly)

+ Efficient, programmers have more control
- Bugs
- Programming productivity

• Widely used in production systems and
legacy systems
• Operating systems, web browsers, etc.
• Large CVE numbers every year

3

The Problems of Using Pointers

• Pointer = Address of variables:
• An 64-bit integer to indicate the index of memory location where variable is

stored

• It is programmers’ responsibility to do pointer check, e.g. NULL, out-
of-bound, use-after-free

• Why Python (and other high-level programming language) does not
have these problems?
• out-of-bound access => emit runtime checks
• use-after-free => garbage collection

4

Memory Corruption Vulnerabilities

• Spatial safety:
• out-of-bound (inter-object, intra-object)
• Can happen on heap and stack

• Temporal safety:
• Use-after-free
• Use before initialization

5

From software
bugs to attacks?

Stack and Stack Smash

6

stack

TEXT (code)

How will the stack
look like during the

execution?

ra

Stack Smash

int func (char *str) {
 char buffer[12];
 strncpy(buffer, str, len(str));
 return 1;
}

int main() {
 …
 func (input);
 …
}

7

Shell code:

PUSH “/bin/sh”
CALL system

ra

Input str:

Shell code
.. Some padding..
Address of buffer

Stack Smash / Code Injection Attack

8

stack

TEXT (code)

Return addr

…

buffer

stack

TEXT (code)

Shell code

Return addr

…

Attack Variations

9

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

L. Szekeres, M. Payer, T. Wei and D. Song, "SoK:
Eternal War in Memory,” S&P’2013

Mitigations

10

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Execute injected
shellcode

Non-executable
Data (W⊕X)

stack

TEXT (code)

Shell code

Return addr

…

Use pointer by
return instruction

Stack canary,
Shadow stack

… to the address of
shellcode/gadget

ASLR

11

Attack Variations

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

Return-Oriented Programming (ROP)

Gadget example:
 pop rdi
 ret

12

stack

TEXT (code)

return addr

stack

TEXT (code)

Shell code

Return addr

…

Jump-oriented programming

return addr 2..

13

Output data
variable

Interpret the
output data

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

Use pointer to
read

Attack Variations

HeartBleed Vulnerability

• Publicly disclosed in April 2014
• Missing a bound check
• Bug in the OpenSSL cryptographic

software library heartbeat extension

14

https://heartbleed.com/

16

Trend reported by Microsoft https://github.com/microsoft/MSRC-Security-
Research/tree/master/presentations/2019_02_BlueHatIL

Hardware Supported
Mitigations

17

1818

Output data
variable

Interpret the
output data

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

Use pointer to
read

Modify a
data variable …

… to the attacker
specified value

Use corrupted data
variable

Modify a
data pointer

Modify code …

… to the attacker
specified code

Make a pointer
go out of bounds

Make a pointer
become dangling

L. Szekeres, M. Payer, T. Wei and
D. Song, "SoK: Eternal War in
Memory,” S&P’2013

Memory Safety

• Strongest security property that tries to address the problem at the root.

• Idea: include metadata and perform security checks at runtime
• Spatial safety (bound information)
• Temporal safety (allocation/de-allocation information)

• Software solutions
• Problem #1: performance overhead, extra instructions to perform the check
• Problem #2: where to store metadata? -> in shadow memory

19
SoftBound: Highly Compatible and Complete Spatial Memory Safety for C; Nagarakatte et al; PLDI’09

SoftBound

int array[100];

ptr = &array;

ptr_base = &array[0];

ptr_bound = &array[100];

table[ptr]={base, bound};

20

shadow memory

array[0]

array[100]

arrayptr

table[ptr] base, bound
Creating a pointer:

SoftBound

int array[100];

ptr = &array;

ptr_base = &array[0];

ptr_bound = &array[100];

table[ptr]={base, bound};

21

shadow memory

array[0]

array[100]

arrayptr

table[ptr] base, bound
Creating a pointer:

int* array_p2 = &array[10];

newptr_base = table[ptr].base;

newptr_bound = table[ptr].bound;

table[newptr]={base, bound};

Pointer arithmetic: array_p2newptr

table[new_ptr] base, bound

Compare number of
memory accesses?

SoftBound

int array[100];

ptr = &array;

ptr_base = &array[0];

ptr_bound = &array[100];

table[ptr]={base, bound};

22

shadow memory

array[0]

array[100]

arrayptr

table[ptr] base, bound
Creating a pointer:

newptr = &array_p2;

{base, bound} = table[newptr];

if (base > array_p2 || bound …)

go to err;

int* array_p2 = 0xFF;

Check a pointer: array_p2newptr

table[new_ptr] base, bound

HW Support for Memory Safety

23

A lot of work. The key is to understand the design trade-offs.

Intel MPX
(Memory Protection Extension)

ARM MTE
(Memory Tagging Extension)

History Announced in 2013, produced in
2015, now not supported anymore.

Introduced in ARM-8.5 in 2018. In 2019, Google
announced that it is adopting Arm’s MTE in Android.
Apple will ship it soon.

Security

Performance

Compatibility

Intel MPX (Memory Protection Extension)

24

4 bound registers (bnd0-3)
• Bndmk: create base and bound metadata
• Bndldx/bndstx: load/store metadata from/to bound tables
• Bndcl/bndcu: check pointer with lower and upper bounds

BOGO: Buy Spatial Memory Safety, Get Temporal Memory Safety (Almost) Free; Zhang et al; ASPLOS’19

Any
problem?

Store the metadata in
a two-level table
in hardware

Why
two-level?

Analysis of Intel MPX
Performance and cost:
 + Reduce number of instructions, and reduce register pressure
 + No branch instructions, so not pollute the branch predictor
 - High overhead: Check is sequential
 + Two-level page table organization should be more area-efficient
 - High overhead: loading/storing bounds registers involves two-level table lookup
Compatibility:
 - Not straightforward about how to extend the scheme to support temporal safety, etc.
 - Does not support multithreading transparently
 - All the code need to be rewritten, otherwise either security breaks or correct code broken

25

Intel MPX Explained: A Cross-layer Analysis of the Intel MPX System Stack; OLEKSENKO et al; SIGMETRICS’18

ARM MTE (Memory Tagging Extension)

• The concept of keys and locks

• Memory locations are tagged by adding four
bits of metadata to each 16 bytes of physical
memory

26

Armv8.5-A Memory Tagging Extension White paper
https://security.googleblog.com/2019/08/adopting-arm-memory-tagging-extension.html

1: char *ptr = new char[16];

2: ptr[17] = 42;
Color mismatch

3: delete [] ptr;

ARM MTE (Memory Tagging Extension)

• The concept of keys and locks

• Memory locations are tagged by adding four
bits of metadata to each 16 bytes of physical
memory

27

Armv8.5-A Memory Tagging Extension White paper
https://security.googleblog.com/2019/08/adopting-arm-memory-tagging-extension.html

1: char *ptr = new char[16];

2: ptr[17] = 42;

3: delete [] ptr;

Re-color

Analysis of ARM MTE

• Where to store tags (key and lock)?
• Pointer tag is stored in top unused bits inside the

pointer (no extra register needed)
• Physical memory tag is stored in hardware (new

hardware needed for both DRAM and cache)
• Limited tag bits
• Cannot ensure two allocations have different

colors
• But can ensure that the tags of sequential

allocations are always different

28

Armv8.5-A Memory Tagging Extension White paper
https://security.googleblog.com/2019/08/adopting-arm-memory-tagging-extension.html

1: char *ptr = new char[16];

2: ptr[17] = 42;

3: delete [] ptr;

Re-color

Analysis of ARM MTE

Security:
- Coarse-grained spatial safety. Non-sequential violation is detected probabilistically
+ Can support temporal safety similar to spatial safety
+ Other extensions (see HAKC paper)

Performance and other overhead:
+ Storage overhead is ok 4 bits per 64 bytes
+ Performance overhead is low, mostly lies in the allocation and free time, since need
to modify tags in bulk

Compatibility:
+ To protect heap, modify libraries to do malloc and free; modify OS to trap on invalid
pointer. No extensive code rewritten needed.

29

3030

Output data
variable

Interpret the
output data

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

Use pointer to
read

Modify a
data variable …

… to the attacker
specified value

Use corrupted data
variable

Modify a
data pointer

Modify code …

… to the attacker
specified code

Modify a
code pointer …

Control-flow Integrity

• To maintain code pointer integrity
• Naïve idea:
• Make pointer immutable (read-only)
• Only work for global offset table and virtual function tables

• How about other pointers?
• Return address?
• Programmer-defined function pointers
• Change function pointers after changing vtable pointer

31

Control Flow Integrity (CFI)

32

sort(int x[], int len, fun_ptr)
{
 for(int i=0; ….)
 for (int j=i; ….)
 if (fun_ptr(x[i], x[j]))
 … //swap x[i] and x[j]
}

Control-Flow Integrity Principles, Implementations, and Applications;
Mart´ın Abadi, et al. CCS'05

33

ARM PA (Pointer Authentication)
• Widely used in Apple processors

• Motivation:
• 64-bit pointer, but 48-bit virtual address

space
• Unused high bits

• Hash:
• A tweakable message authentication code

(MAC)
• ARM calls it PAC (pointer authentication

code)
• Context:

• secret key
• salt (could be the stack pointer)

34

Before function call Before function return

Summary

• Memory corruption problems: An eternal war

• Attack variations and mitigations

• Trade-off in hardware support

35

2020

Output data
variable

Interpret the
output data

Use pointer by
return instruction

Make a pointer
go out of bounds

Use pointer to
write (or free)

Modify a
code pointer …

… to the address of
shellcode/gadget

Execute injected
shellcode

Make a pointer
become dangling

Use pointer by
indirect call/jump

Execute available
gadgets/functions

Use pointer to
read

Modify a
data variable …

… to the attacker
specified value

Use corrupted data
variable

Modify a
data pointer

Modify code …

… to the attacker
specified code

