Hardware Bugs and Fuzzing

Mengjia Yan
Spring 2024
sysret slides credit: Will Liu (MIT)

Ui U@y ==

I What is Errata?
intel)

8t and 9t" Generation Intel®
Core™ Processor Family

Specification Update
Supporting 8" Generation Intel® Core™ Processor Families for
S/H/U Platforms, formerly known as Coffee Lake

Supporting 9" Generation Intel® Core™ Processor Families
Processors for S/H Platforms, formerly known as Coffee Lake
Refresh

November 2019

Revision 002

It is a compilation of device and document errata and
specification clarifications and changes, which is intended for
hardware system manufacturers and for software developers
of applications, operating system, and tools.

Errata are design defects or errors. Errata may cause the
processor’s behavior to deviate from published specifications.
Hardware and software designed to be used with any given
stepping must assume that all errata documented for that
stepping are present on all devices.

https.//www.intel.com/content/www/us/en/products/docs/processors/core/8th-gen-core-spec-update.html

Errata Table Example

3.2

Errata Summary Information

Table 4-3. Errata Summary Table

ID

00:

00:

00!

00

Processor Line / Stepping

S

H u Title

001

Reported Memory Type May Not Be Used to Access the VMCS and
Referenced Data Structures

Problem

Bits 53:50 of the IA32_VMX_BASIC MSR report the memory type that the processor
uses to access the VMCS and data structures referenced by pointers in the VMCS.
Due to this erratum, a VMX access to the VMCS or referenced data structures will
instead use the memory type that the memory-type range registers (MTRRs) specify
for the physical address of the access.

Implication

Bits 53:50 of the IA32_VMX_BASIC MSR report that the write-back (WB) memory
type will be used, but the processor may use a different memory type.

Workaround

Software should ensure that the VMCS and referenced data structures are located at
physical addresses that are mapped to WB memory type by the MTRRs.

Status

For the steppings affected, refer the Summary Table of Changes.

M O re E rrata Occasionally, AMD identifies product errata that cause the processor to

deviate from published specifications. Descriptions of identified product
errata are designed to assist system and software designers in using the
processors described in this revision guide. This revision guide may be

AMD updated periodically.

Revision Guide for
AMD Family 10h
Processors

Publication # 41322 Revision: 3.92
Issue Date: March 2012

Advanced Micro Devices i1

https://www.amd.com/system/files/TechDocs/41322_10h |

298 L2 Eviction May Occur During Processor Operation To Set
Accessed or Dirty Bit

Description

The processor operation to change the accessed or dirty bits of a page translation table entry in the L2
from Ob to 1b may not be atomic. A small window of time exists where other cached operations may
cause the stale page translation table entry to be installed in the L3 before the modified copy is
returned to the L2.

In addition, if a probe for this cache line occurs during this window of time, the processor may not set
the accessed or dirty bit and may corrupt data for an unrelated cached operation.

Potential Effect on System

One or more of the following events may occur:

* Machine check for an L3 protocol error. The MC4 status register (MSR0000 0410) is
B2000000_000BOCOFh or BA000000 000BOCOFh. The MC4 address register
(MSR0000 0412) is 26h.

* Loss of coherency on a cache line containing a page translation table entry.
» Data corruption.
Suggested Workaround
BIOS should set MSRC001_0015[3] (HWCR[TIbCacheDis]) to 1b and MSRCO001_1023[1] to 1b. 4

In (>} mn]ﬁf\rnnpocnr n]nff“nrm f]’\D urnr](arnnnr] an‘lﬁ O]’\I\ll]f‘]’\‘! Q““]I‘D!‘ 4+ Q]] MmMYMNrroacomroe TA"QTA]DQC I\‘F

Moore’s Law: The number of transistors on microchips doubles every two years [ONaWEHE

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count

50,000,000,000 GC2IPU €©AMD Epyc Rome
72-core Xeon Phj Centriq 2400 "¢ € AWS Graviton?2
o W \qu core AMD Epyc
4 torage Controller /\pp\L A12X Bionic
107000!00()?000 18-core Xeon Haswell- [3 HiSilicon Kirin 990 5G
Xbox One main S0C Apple A13 (iPhone 11 Pro)
5,000,000,000 61 core Xeon i & 8 8 , QAMD Ryzen 7 3700X
12-core POWERS < ™ HiSilicon Kirin 710
8-core Xeon Nehalem [X\ 810 core Core i7 Broadwell-E
g Qualcomm Snapdragon 835

core Xeon 7400

Six
Dual-core Hanlum 29 L2 ° Dual-core + GPU lris Core i7 Broadwell-U

Quad-core + GPU GT2 Core i7 Skylake K

1,000,000,000 Pentium D Presler WERG g < 8 ° Quad core + GPU Core i7 Haswell
Apple A7 (dual-core ARM64 "mobile SoC")
500’000’000 “‘;Wg] : Wllho\ °Aﬁlc)o;a E)7 Qulm 2M L3
; quad-cc
Itanium 2 Madison 6M € °Cor(2 L)uo“\]/\a/olfdn\e

10,000 x

|

Pentium D Smithfields Core 2 Duo Conroe
Itanium 2 McKinley € © C Il Core 2 Duo Wolfdale 3M

Pentium 4 Prescott-2M € \ ore 2 Duo Allendale
p

100,000,000 AMD Ke® Y entium 4 Cedar Mill

Pentium 4 Prescott
S0,000,000 Pentium 4 Nonlwoodo Q@Barton B
om

Pentium 4 Willamette °
Pentium Il Mobile Dixon © ARM Cortex-A9

AMD K7 @ Pentium Il Coppermine

Pentium IIl Tualatin

AMD Ké-Ill
10,000’000 AMD K, PQPLnUhn 1)\\1 i'<1lm ai
S,OO0,000 PCnﬁumProo PLﬁiumHm tium eschutes
Klamath
P@nhum° AMD K5
SAT110
1,000,000 Intel 804869, @
. NEsei e RS
Intel 8038 !ntd QARM 3
Motorola 68()200% ‘)Og
100,000 7 DEC WRL
’ Motorsia Intel 80286 HitTian Re
50,000 wile @ intel 80186 71DMS
Intel 8086¢p € Intel 8088 0, OrRM2 X
ARM 1
10.000 Motorola ()5C?;C16 N°
’ TMS 1000 Zilog Z80 6809 K DNovix
5,000 RCAL802 Qneeigogs 072
Intel 8()()8° Intel 8080
Motarola g5 ,%% Technology
Intel 4004 ©990
1,000
O AV ™ Ab R ;b DO xR DD PP RO D IR P
S 7 7 (S

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced
OurWorldinData.org - Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

Errata Statistics

s==slllemory Gontroller:/O:
STt sdSsddSsdSaatint

s el bR R

The Core-i7 processor with integrated graphics card
in 2012 with 1,400M Transistors

4 years; 136 errata; 3 bugs/month

SPECS: A Lightweight Runtime Mechanism for Protecting Software
from Security-Critical Processor Bugs; Hicks et al; ASPLOS’15
https://github.com/impedimentToProgress/specs

A 4-fold increase in bugs in Intel processor designs
per generation. Approximately 8000 bugs
designed into the Pentium 4 (‘Willamette’)

from https://www.cl.cam.ac.uk/~jrh13/slides/nijmegen-
21jun02/slides.pdf

I Outline

 Hardware Bug Examples
 How do they look like? The discovery process? Impact?
* #1: The famous Pentium FDIV bug
* #2: SYSRET 64-bit OS privilege escalation vulnerability on Intel CPU
* #3: Branch history injection attack

* How to discover hardware bugs?
* Manual efforts, testing
* Fuzzing
* Formal verification (next lecture)

Bug #1: Pentium FDIV Bug

* What is the specification for floating-point computation?
* Floatingisencodedas (1 + f)x2°,0<f<1l,e€eZ
e Example: 1/10 = 1.9999 ...9a x 2~* (in hexadecimal)

* We always have errors when doing floating-point computation, because we
have limited number of bits for each floating number

* The specification allows error to occur after bit x

Single Double Extended '.‘ The Pentium FDIV
precision precision precision bug: see errors much
earlier than the
\é\(;r;j Si:e S ;g 2; | 2(3) expected x bits
its for
Bits for e 8 11 15

Relative accuracy 2723=1.2-107 252222.1076 26=1.1. 10‘19
Approximate range hroqotss gtz qptis pFiesss . qoteses

The computational aspects of the Pentium affairs. Coe et al. IEEE 1995 https.//people.cs.vt.edu/~naren/Courses/CS3414/assignments/pentium.pdf

The Discovery Process #1: Nicely’s Prime

 Thomas Nicely, a mathematics professor, tried to compute reciprocal
of prime numbers: p = 824,633,702, 441

* The correct result: Difer ater
1/p = 1.212659629408667 X 1012 the Sth digit

* But the new Pentium processor gives:
1/p = 1.212659624891158 x 1012

* Took him four months to confirm the problem was NOT in
his program -> math libraries -> compilers -> operating system,
but in the hardware

- P
o ©

Any other
— numbers ...?

The Discovery Process #2: Kaiser’s List

* Andreas Kaiser, a computer consultant

* Generate 25 billion random integers and checked the accuracy of the
computed reciprocals. 23 are incorrect.

3221224323
12884897291
206158356633
824633702441
1443107810341
6597069619549
9895574626641
13194134824767
26388269649885
52776539295213

I
1.7££££70580000 -
LTEE££704c8000 -
JIEEEEE7052000 -
.A4fffedac25000 -
LTEEEE£7057400 -
.1fffcébc2a200 -
TEEE£704€700 -
LTEE££704£3400 -
JTEEE£7046£680 -

e = = T = T S S

7££££70600000

. 231

233

Patterns?

* Many are started with 1.7ffff
* In another word, the first 20 bits after the

leading bit have to be a single zero,
followed by at least 19 ones

Pentium computed the reciprocals of these numbers inaccurately 10

I The Discovery Process #3: Coe’s Ratio

* Tim Coe, electrical engineer, has designed floating-point chips

4,195,835 :
. = 1.33382044 ... (correct) 1.33373906... (Pentium)
3,145,727
Differ after

8 the 4th digit
3 1.333830 -
® 1.333820
8 1333810 '
.g 1.333800
E 1.333790
5 1.333780 1 ’ 1
sty The erorrs involve y /x where x and y’s bit
£ 1.333760 1 1
S oeareo. patterns conspire to excite the bug at an
< 1.333740 -
S o730 ey early stage in the division.
£ %%%Q) e %%VQ & " & o & - %‘5& Q?’b %‘5%% <b'5<° <z§5<° Q?’% ‘5@9 & ¢ & 3

il \@‘0 <§° c§° q" & CS° R <S° & Q§° & q‘° R
- - . M b b b
Numerator

11

Bug Explanation: FDIV

e Shift-and-subtract

1.3337%

3145727 ‘ 4195835
3145721

10501080
9437181

10638990
9437181

12018090
9437181

25809090

P22°2°27°7?7°

* Old processors: choose quotient from 0, 1
How to choose

guotient as a

human being? e Faster Sweeney, Robertson, and Tocher (SRT)

algorithm Radix-4:
e Choose quotient from0,+1,— 1,42, —2;

* If the current quotient is incorrectly
chosen, we can recover it from the next
iteration

* Guess the quotient based on the first few
digits => use a 2D table to lookup

A combination of trial and error,
experience, pattern matching and luck.

12

https://en.wikipedia.org/wiki/Division_algorithm

I Bug Explanation: SRT Table

first 7 bits of
the remainder

A\

5.375

§.25

§.1z25

5.0

4.875

4.75

4.625

4.5

4.375

4.25

4.125

4.0

3.875

3.75

3.625

3.5

0101.011

0l01.010

0101.001

0101.000

0100.111

0100.110

0100.101

0100.100

0100.011

0100.010

0100.001

0100.000

00l1.111

00l1l.110

0011.101

00l1.100

L I e R e e

= OO0 0o

o OO

==

(=T = I I = I

- OorF O

oOF K~ O

{ first 5 bits of the divisor

O

0O 00

(==

O F O K

- O~

(==

=

=

R

(8/3)

2048 cells in total
1066 cells in use

5 cells are not initialized

When the bug will be
triggered?

\\ nnnnnn
]
q=2 L -
g=1
= 1
|
|
|
> -
= G 5 v
q=0
T~ i i)
]
]
=
.
g=-1
q=-2
1]
,,,,,, A o

How Frequently the bug can be triggered?

* Intel: an average spreadsheet user could encounter this flaw once in
every 27,000 years, assuming 1,000 divisions per day.

* IBM: suspended sales of Pentium-based models and said it is as many
as 20 mistakes per day.

* Who actually got affected?
* Normal users?

* Wall street? Financial pre-diction programs? Did the Pentium bug flip a
trading decision from buy to hold to sell?

e Difficult to calibrate

14

I Consequences/Impacts

* Intel’s bad responses Some humor for you:
. Q: How many Pentium designers does it take to screw in a light bulb?
* Con d Itiona | rep | acement (C ustomers nee d to A:1.99904274017, but that's close enough for non-technical people.
Cl_a Im th ey d O get I nfl Uen Ced by the b Ug) 9 Q: What do you get when you cross a Pentium PC with a research grant?
disastrous press A: A mad scientist.
e N o-que stions-as ke d rep | acement 9 $ 475M cost Do you think it bothers x86 users that the 486 is a functional upgrade to the Pentium?
i] 1 9 94’ 1 O% re p | acements In response to the Pentium bug, PowerMac officials have announced that they will be

adding the control panel "Pentium Switcher" that allows users to decide whether the
PowerMac should emulate pre-Pentium or post-Pentium FDIV behaviour.

TOP TEN NEW INTEL SLOGANS FOR THE PENTIUM

* Potential long-term impact:

° 1 1 1 9.9999973251 It's a FLAW, Dammit, not a Bug
Random test is not be a good idea. Exhaustive 59999163362 Its Closs Frionehs We Suy So

test has scalability problem. 7.9999414610 Nearly 300 Correct Opcodes
. . 6.9999831538 You Don't Need to Know What's Inside
* A marked increase in the use of formal 5.9999835137 Redefining the PC--and Mathematics As Well
e L . 4.9999999021 We Fixed It, Really
verification and number theory in hardware 3.9998245917 Division Considered Harmful
design 2.9991523619 Why Do You Think They Call It *Floating* Point?

19999103517 We're Looking for a Few Good Flaws
0.9999999998 The Errata Inside

http://davefaq.com/Opinions/Stupid/Pentium.html#qlitch
15

http://davefaq.com/Opinions/Stupid/Pentium.html

I Bug #2: A SYSRET Bug

SYSCALL
 HW transits from user mode to kernel mode
64-bit x86 instruction set: AMDG64, Intel 64 « Save the userspace next-PC to the RCX register
* Jump to a kernel syscall entry point
SYSCALL
User Kernel
Space Space
SYSRET

SYSRET
* HW transits from kernel mode to user mode
* Restore the userspace next-PC from the RCX register

A Stitch In Time Saves Nine: A Stitch In Time Saves Nine: A Case Of Multiple OS Vulnerability; Rafal Wojtczuk; BlackHat, 2012
Model Checking to Find Vulnerabilities in an Instruction Set Architecture; Bradfield et al; HOST’16 16

I Two Different Specifications for SYSRET

AMD
SYSRET

HW transits from kernel mode
to user mode

Restore the userspace next-PC
from the RCX register

Restore the userspace next-PC
from the RCX register

HW transits from kernel mode
to user mode

Order is
flipped

Intel
SYSRET

17

SYSRET Vulnerability

#GP in kernel
mode

O Intel

HGP in user
mode

HW transits from kernel mode estore the userspace next-PC

AMD to user mode from the RCX register
SYSRET SYSRET
Restore the userspace next-PC HW transits from kernel mode
from the RCX register to user mode

If RCX holds a non-canonical address, the SYSRET will generates a #GP (general protection fault)
Canonical means that given 48-bit virtual address space, the high 16 bits (bits 63-48) of a virtual
address have same value as bit 47.

18

How SYSRET is used in kernel code?

* What do we do before we transition from kernelspace to userspace?

movq RCX(%rsp), %rcx

movq RIP(%rsp), %rll

cmpq %rex, %rll /* SYSRET requires RCX == RIP */
jne swapgs_restore_regs _and_return_to_usermode

At this boi
tthis point, /* populate all the registers using data from userstack */

all the registers are '
user-controlled Sysret

(attacker-controlled)

https://elixir.bootlin.com/linux/v5.9.9/C/ident/movq
https://elixir.bootlin.com/linux/v5.9.9/C/ident/RCX
https://elixir.bootlin.com/linux/v5.9.9/C/ident/rsp
https://elixir.bootlin.com/linux/v5.9.9/C/ident/rcx
https://elixir.bootlin.com/linux/v5.9.9/C/ident/movq
https://elixir.bootlin.com/linux/v5.9.9/C/ident/RIP
https://elixir.bootlin.com/linux/v5.9.9/C/ident/rsp
https://elixir.bootlin.com/linux/v5.9.9/C/ident/r11
https://elixir.bootlin.com/linux/v5.9.9/C/ident/rcx
https://elixir.bootlin.com/linux/v5.9.9/C/ident/r11
https://elixir.bootlin.com/linux/v5.9.9/C/ident/jne

I SYSRET Attack on Intel Processors

usermode
stack

IDT

#GP handler stack

#HGP handler

Before executing SYSRET, all registers have

Registers
Ring0
rsp

rex
rip \

RCX holds

Need to handle #GP
in kernel mode

—)

a hoh-canonical

address

been restored using usermode context

Registers

Ring0

usermode
stack

IDT

#GP handler stack

#GP handler

rsp

rcx

rip

Assume rip points to kernel stack and start
using it --> can overwrite kernel data

20

Longtime Intel x86 OS Bug

2012-07-05

[PATCH] x86_64: Wh

Intel EM64T CPUs hant

from AMD CPUs.

The exception is rept
This leads to the ke
with the wrong GS bec
on this instruction.

This version of the
version fix

This is

Thanks to Ernie Petrides

patches.

®CVE-2012-0217

mm

[

MODIFIED

ed.

Detail

CVE-2012-0217: Intel's sysret Kernel
Privilege Escalation (on FreeBSD

By iZsh

Filed under vulnerability exploit FreeBSD

and Asit B.

Mallick for analysis and initial

CVE-2014-4699

. Linux Kernel ptrace/sysret vulnerability

This vulnerability has been modified since it was last analyzed by the NVD. It is awaiting rear

changes to the information provided.

Description

analysis

by Vitaly Nikolenko

(® Posted on July 21, 2014 at 6:52PM

The x86-64 kernel system-call functionality infXen 4.1.2 and earlier, as used in Citrix XenServe. «.c.cc.c cict cim coies pevmanns,
Oracle Solaris 11 and earlier; illumos before r13724; Joyent SmartOS before 20120614T184600Z; FreeBSD before 9.0-RELEASE-
p3; NetBSD 6.0 Beta and earlier; Microsoft Windows Server 2008 R2 and R2 SP1 and Windows 7 Gold and SP1; and possibly other
operating systems, when running on an Intel processor, incorrectly uses the sysret path in cases where a certain address is not a

Exploiting Sysret on Linux in 2023

Kernel ROP
attack!

|

The sysret UlTS e
wulnerability E—) addresses of —)
ROP gadgets
allows an attacker to write A missing piece: need
data into kernel addresses to bypass ASLR...
(using the values prepared in
the registers in user space) I

Side channel attacks
(EntryBleed)

22

It’s not a bug, it’s a feature

Description

SYSRET is a compan
code at privilege leve
size, SYSRET remain
ters are loaded.

Operation

IF (CS.L# 1) or (IA32_EFER.LMA # 1) or (IA32_EFERSCE # 1)
(* Not in 64-Bit Mode or SYSCALUSYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
IF (CPL # 0) THEN #GP(0); FI;

IF (operand size is 64-bit)
THEN (* Return to 64-Bit Mode *)

IF (RCX is not canonical) THEN #GP(0);

RIP:= RCX;

ELSE (* Return to Compatibility Mode *)

RIP:= ECX:
Fl;
RFLAGS = (R11 & 3C7FD7H) | 2;

IF (operand size is 64-bit)

OS system-call handler to user
ym R11)! With a 64-bit operand
only the low 32 bits of the regis-

(* Clear RF, VM, reserved bits; set bit 1 *)

THEN CS.Selector := IA32_STAR[63:48]+16;

ELSE CS.Selector := IA32_STAR[63:48];

£l

CS.Selector := CS.Selector OR 3;

(* RPL forced to 3 *)

(" Setrestof CS 1o a fixed value *)
CSBase :=0;
CS.Limit := FFFFFH;
CSType:=11;
CSS:=1;
CSDPL := 3;
GSP=T;
IF (operand size is 64-bit)
THEN (* Return to 64-Bit Mode *)

(* Flat segment *)
(* With 4-KByte granularity, implies a 4-GByte limit *)
(* Execute/read code, accessed *)

23

It’s not a bug, it’s a feature

Intel claims that this vulnerability is a software implementation issue, as their
processors are functioning as per their documented specifications. However,
software that fails to take the Intel-specific SYSRET behavior into account may be

vulnerable.
https://www.kb.cert.org/vuls/id/649219

24

https://www.kb.cert.org/vuls/id/649219

Who to blame?

* Intel claims it is not an errata

* Errata are design defects or errors that may cause ... behavior to
deviate from published specifications.

* This behavior is consistent with Intel’s specification
e So the problem is the specification is incorrect

* Intel SDM (software development manual) 3400 pages. We cannot
assume the specification is always correct.

* Research question: how can we know the ISA specification is correct?
* Some research efforts to verify ISA specification

25

The Sail ISA specification language

Sail ISA models and tooling

Arm-A (C'\H/'EOF{F)\'F?M) CHERIRISC-V CHERI-MIPS x86
ASL ASL Sail Sail ACL2

*asl_to_sail *asl_to_sail *
Arm-A omorelo RISC-V MIPS x86
Sail Sail Sail Sail Sail

oo st —
Sequentlal Executlon

: Documentation
Sequential i CHERI-RISC-V

I . .
Emulator (C) \ . fragments ¢ CHERI-MIPS
Sequential / \ RTETTRRRRIT . Prover Definitions

. Emulator (OCamI)
B GRREEEIEEE e : isla SMT

ISA Tests symbolic evaluator ;

: . lsabelle :

: Test / Y * \ sabelle |
: Generation : isla—axiomatic RMEM §

T ' concurrency concurrency ' HOL4 §

tool tool é :

Pr°°f5 above Ir|s+Coq Concurrent Execution

suoniueq vs|

S10BJIUY pajelausn)

I Bug #3: elBRS Vulnerability

 Recap Spectre v2 Branch Target Buffer (BTB)

* ¢elBRS: Enhanced Indirect Branch Restricted predicted
Speculation. Advertised as a mitigation against ID Entry PC Valid target PC
Spectre v2.

Specification: . . .

Do not let lower-privileged code to interfere the branch S S .

prediction target of the high-privilege code.

OR %

Isolate BTB entries across privilege leve

What does this mean?
Non-interference?
A vague specification. \ \
match valid target
Barberis et al. Branch History Injection: On the Effectiveness of Hardware Mitigations Against .

Cross-Privilege Spectre-v2 Attacks. USENIX’22 https.//www.vusec.net/projects/bhi-spectre-bhb/

Recap the Problem: Branch History Injection

Branch BHB (branch
Source history buffer) Branch Target Buffer (BTB)
predicted
ID Entry PC Valid target PC
hash
Kk . . :
e ® e
e ® ®
o H#1: Userspace code can
trigger different system calls

e #2: Userspace prediction
history can affef:t !<ernel match valid target
space BTB prediction

28

Summary

Srien s

(3
o
SN
By,
N
EREREE 9
E |
)
<
i
b
S|
is)
>
3

Implementation does not
match specification
(Errata)

Bugs in the specification Vague specification

* Next: How to find hardware bugs?
 Get ideas from the software

Software Bugs Hunting/Fixing

* Approach 1: Manual effort
* Hire a lot of experts and stare at the code
* Regression test = but need to be updated

* Approach 2: How about randomly generating test cases?
* Fuzzing

e Approach 3: Formal verification

30

Fuzzing

Fuzzing In A Nutshell

» Automatic generate test examples

1999, Alan Cox at University of Wales discovered a vulnerability in Linux kernel by
simply running a proram generating random input and feed into the kernel

* Crash is generated by assertions/specifications

Input Run Program Crash

Simple yet effective

Industry standard

From Riding the Fuzzing Hype Train (RAID'21 Keynote) 37

Fuzzing Components

* Random seeds
 Sometimes need formatted inputs, e.g.,
PDF reader

e A criteria to check whether the
outcome is as expected or not.
e Specification

» Security invariant (paper discussion
SPECS)

e Assertions (address sanitizer)

* Heuristics for generating new tests =>
feedback loop for better efficiency

33

Types of Fuzzing

e Blackbox

* Greybox

 Whitebox

Collected coverage:

From Blackbox Fuzzing to Whitebox Fuzzing towards Verification; Patrice Godefroid; Microsoft Research
34

Example: Hidden Instructions

* Hidden instructions: secret instructions that give backdoor or
powerful access to processor internals

 Secret processor functionality: Appendix H

* An example:
* Pentium FOOF bug, an invalid instruction freezes the cpu, discovered in 1997

* A Ring 3 process can DOS (denial of service) a process
* The invalid instruction encoding is: FO OF C7 [C8-CF]

Breaking the x86 ISA, Christopher Domas; Blackhat’17

35

I Search for Hidden Instructions

Valid instructions (in spec)

Instructions: . .
» Invalid instructions

OF 6A 60 6A 79 6D C6 02 .. — praem (#UD exception, invalid opcode)

4

1

ISA specification: but can execute, no #UD exception)

Hidden instructions (not in spec,

Table A-2. One-byte Opcode Map: (OOH — F7H) *

0 | 1] 2 | 3 | 4 [5 6 7
0 ADD PUSH POP
Eb, Gb | Ev, Gv | Gb, Eb | Gv, Ev | AL, Ib | AX, Iz ES® ES®
1 ADC PUSH POP
EbGb | Ev, Gv | Gb, Eb | Gv, Ev | AL, Ib | rAX, Iz ss* ss*
2 AND SEG=ES DAAi64
ebee | Evev | eE | euev | oAb | mxe (Prefix)
3 XOR SEG=SS AAAIS4
EbGb | Ev, Gv | Gb, Eb | ouev | AL, Ib | maxe (Prefix)
4 INC'®4 general register / REX°%* Prefixes
eAX | eCX ‘ eDX | eBX eSP eBP eSl eDI
REX REX.B REX.X REX.XB REXR REX.RB REX.RX REX.RXB

36

I Challenges #1: Detect Hidden Instruction

Instructions:

=

OF 6A 60 6A 79 6D Cé6 02 .

4

How to capture
this case?

Valid instructions (in spec)

Invalid instructions
(#UD exception, invalid opcode)

Hidden instructions (not in spec,

but can execute, no #UD exception)
O

Engineer the trap/exception handler
(Lab 6.A)

37

Challenges #2: Large Space

* CISC: Variable length instructions
* One-byte instruction: 0x40 -> inc eax
e 15-byte instruction: 2e671048 818480 23df067e 89abcdef ->
lock add gword cs:[eax + 4 * eax + 07e06df23h], ©@efcdab89h
* Worst-case exhaustive search: 256715

e Observation: the meaningful bytes of an x86 instruction impact either
its length or its exception behavior

* A potential solution: depth-first search

OF 6A 60 6A 79 6D C6 02 ..

]

38

Challenges #3: Measure Instruction Length

* Trap flag
e Execute an instruction, set PC to the next instruction, and go to trap handler
* Inside the trap hander, observe instruction length

* How to deal with privilege instructions?
A page fault means the

* Trap in user space. Will not advance the PC instruction length is

. . . longer than guessed
* A potential solution: page fault analysis

Executable page Non-executable page

OF| 6A 60 6A 79 6D C6 02 ..

39

Engineering Efforts to Survive

* Hack the kernel to hook page fault handler to catch the instruction

 Hack various fault handler inside the kernel in case the the hidden
instruction traps

* A lot more...
e watch the talk, learn in the system programming recitation and the
fuzzing lab

https.//www.youtube.com/watch?v=KrksBdWcZgQ

40

I SandSifter and Findings

e Hidden instructions across
Intel and AMD processors

e Software bugs in
disassemblers, such as IDA,
objdump, VS, etc.

like FOOF

Breaking the x86 ISA, Christopher Domas; Blackhat’17 https.//www.youtube.com/watch?v=KrksBdWcZgQ

* Hardware errata, something

41

https://www.youtube.com/watch?v=KrksBdWcZgQ

More Hardware Fuzzing Examples

» Zenbleed: found a CPU bug via post-silicon fuzzing

movnti [rbp+0x0],ebx movnti [rbp+0x0],ebx
sfence
rcr dh,1 rcr dh,1
1fence
sub r10, rax sub r10, rax
mfence
rol rbx, cl rol rbx, cl
nop
xor edi, [rbp-0x57] xor edi, [rbp-0x57]

A randomly generated sequence of instructions, and the same sequence but with randomized alignment,
serialization and speculation fences added.

* White-box fuzzing of hardware -> more in paper discussions

https://lock.cmpxchg8b.com/zenbleed.htm|

42

I Summary =

* Hardware bugs
» Deviate from specification (errata)
* Incorrect and vague specification

* Potential approaches to find hardware bugs
* Manual analysis, testing
* Fuzzing
e Formal Verification (next lecture)

Program testing can be quite effective for showing the presence of
bugs, but is hopelessly inadequate for showing their absence.
- Edsger Dijkstra

43

