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Recall Hardware Bugs

Implementation does not 
match specification

(Errata)
Bugs in the specification Vague specification



Program/Design Testing

• In principle: Exhaustive testing can prove correctness
• In practice: Test cases are generated to cover some (not all) 

inputs/statements/branches/paths etc.

A testing
strategy

Probably right
or 

Certainly wrong

Program testing can be quite effective for showing the presence of 
bugs, but is hopelessly inadequate for showing their absence.      
           ‒ Edsger Dijkstra



Program/Design Verification

program
verifier Right or Wrong?

The goal: (under some conditions), program verifier
• can provide a proof (if program is right) 
• or provide a counterexample (if program is wrong)



Formal Verification
“Verification”: formally prove that the program/design is correct
• Rigor: uses well established mathematical foundations
• Exhaustiveness: considers all possible program behaviors
• Automation: uses computers to verify programs!

Design costs at recent nodes. 
Source: Handel Jones, IBS

In many contexts, the 
term verification can 

be used in a loose way. 

http://www.ibs-inc.net/


Overall, it is a search problem…



Applications

Solvers

Methods

Program verification, 
program synthesis, 
test generation, etc.

SAT, SMT, BDDs,
proof systems, etc.

Symbolic execution, 
model checking, 
invariant generation, etc.

(! (= a (* 2 (+ 10 b)))))

How does formal verification work?
Some SystemVerilog Code

+ 
Assertion check for 

specification violation



Symbolic Execution: A Simple Example #1

int hash(int z){
   return (z+10)*2;
}

int obscure(int x, int y) 
{ 
 if (x==hash(y))
  assert(false); 
 return 1; 
}

(define (hash z)
  (* (+ z 10) 2)
  )

(define (obscure x y)
  (if (= x (hash y))
         (assert #t)
         (- x y))
  )

C code: Rosette code:

How will fuzzing 
behave to find 

this error?



A Simple Example #2

• Build execution tree with all the 
execution paths

• Each execution path has logical 
formula to describe path conditions

• The common pitfall: extremely large 
formula -> memory overhead and 
scalability issue

int hash2(int z){
   if (z>10)
  z = z-10;
   return z;
}

int obscure(int x, int y) 
{ 
 if (x==hash2(y))
  error(); 
 return x-y; 
}



How does formal verification work?

Applications

Solvers

Methods

Program verification, 
program synthesis, 
test generation, etc.

SAT, SMT, BDDs,
proof systems, etc.

Symbolic execution, 
model checking, 
invariant generation, etc.

int hash2(int z){
if (z>10)

z = z-10;
return z;

}

int obscure(int x, int y) 
{ 

if (x==hash2(y))
error(); 

return x-y; 
}

(! (= a (* 2 (+ 10 b)))))

Success with SAT is at the heart of  
formal reasoning about systems.

=>  Linux kernel, crypto 
libraries, processor 
Verilog code…



Big Advancements in the Past Decade

(1) SAT: is a Boolean formula f satisfiable?

(2) SMT (Satisfiability Modulo Theory): is a first-order logic formula 
theory-satisfiable?

2004
DPLL(T)

2008
Z3

2009
SMT

1960
DP

»10 var

1962
DLL

» 10 var

1952
Quine
» 10 var

1986
BDD

» 100 Var

1988
SOCRATES
» 3k Var

2001
Chaff

»10k var

2003
MiniSAT
»10k var

1996
GRASP
»1k Var

1997
SATO
» 1k Var

1996
Stålmarck
» 1k Var



SAT in a Nutshell

¨ Given a propositional logic (Boolean) formula, find a variable assignment such that the formula 
evaluates to 1, or prove that no such assignment exists.

¨ For n variables, there are 2n possible truth assignments to be checked.

¨ First established NP-Complete problem.

 S. A. Cook, The complexity of theorem proving procedures, Proceedings, Third Annual ACM Symp. on the 
Theory of Computing,1971, 151-158

F = (a + b)(a’ + b’ + c)

a

b b

c c c c

0 1

0 0

00 001

1 1

1 1 1



Where are we today?

¨ Complexity of SAT: NP-complete
¤ But often tractable in practice

¨ Intractability of the problem no longer daunting
¤ Can regularly handle practical instances with millions of variables and constraints

¨ SAT has matured from theoretical interest to practical impact
¤ Electronic Design Automation (EDA)

n Widely used in many aspects of chip design

¤ Increasing use in software verification
n Commercial use at Microsoft, Amazon,…



Problem Representation

¨ Conjunctive Normal Form (CNF)
¤ Representation of choice for modern SAT solvers
¤ Every clause needs to be evaluated to TRUE

(a+b+c)(a’+b’+c)(a’+b+c’)(a+b’+c’)

Variables ClausesLiterals



SAT Solvers: A Condensed History

¨ Deductive 
¤ Davis-Putnam 1960 [DP]

¤ Iterative existential quantification by “resolution”

¨ Backtrack Search
¤ Davis, Logemann and Loveland 1962 [DLL]

¤ Exhaustive search for satisfying assignment

¨ Conflict Driven Clause Learning [CDCL]
¤ GRASP: Integrate a constraint learning procedure, 1996

¨ Locality Based Search
¤ Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and others, 2001 onwards

¤ Added focus on efficient implementation

¨ “Pre-processing”
¤ Peephole optimization, e.g. miniSAT, 2005

We cover these two 
algorithms to give 
you a taste of how 
the search works.



Basic DLL Search

a
0

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

Ü Decision
→

→
→

M. Davis, G. Logemann, and D. Loveland. A machine program for 
theorem-proving. Communications of the ACM, 5:394–397, 1962



Basic DLL Search
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Basic DLL Search
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Basic DLL Search
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Basic DLL Search
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Ü Backtrack d=1,d=0

Think about the search performance:
- What factor determines how fast we find a SAT assignment?

How fast a conflict is detected. Order matters.



Basic DLL Search
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(a’ + b’ + c)

Basic DLL Search
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(a’ + b’ + c)

Basic DLL Search
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Basic DLL Search
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Ü SAT

0

Implication Graph

→

c=1,d=1

Unit-clause rule with
backtrack search



Conflict Driven Learning and Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

J. P. Marques-Silva and Karem A. Sakallah, “GRASP: A Search Algorithm for 
Propositional Satisfiability”, IEEE Trans. Computers, C-48, 5:506-521, 1999.



Conflict Driven Learning and Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’ 
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0

x1=0
Red text means evaluated to 0, and green means evaluated to 1

For the graph on the left: 
Blue circles means free variable, and brown circles mean inferred variable.
Edge describes the inferred relationship.



Conflict Driven Learning and Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x4=1

x1=0



Conflict Driven Learning and Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x3 x3=1

x4=1

x3=1x1=0



Conflict Driven Learning and Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x3 x3=1, x8=0

x4=1

x3=1

x8=0

x1=0



Conflict Driven Learning and Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x3 x3=1, x8=0, x12=1

x4=1

x12=1

x3=1

x8=0

x1=0



Conflict Driven Learning and Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0

x4=1

x12=1

x3=1

x8=0

x1=0

x2=0



Conflict Driven Learning and Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x4=1

x12=1

x3=1

x8=0

x1=0

x2=0

x11=1



Conflict Driven Learning and Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7 x7=1x4=1

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1
Now getting 
interesting.. 

What will be x9?



Conflict Driven Learning and Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7 x7=1, x9= 0, 1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1



Conflict Driven Learning and Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x7

Add conflict clause: x3’+x7’+x1

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9= 0, 1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1 x3=1Ùx7=1Ùx1=0 ® conflict



Conflict Driven Learning and Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x7

Add conflict clause: x3’+x7’+x8

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9= 0, 1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1 x3=1Ùx7=1Ùx8=0 ® conflict



Backtrack to the decision level of x3=1
 

Conflict Driven Learning and Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9= 0, 1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

x3’+x7’+x8



Conflict Driven Learning and Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’
x3’ + x7’ + x8

x1

x3

x1=0, x4=1

x3=1, x8=0, x12=1,x7=0

Backtrack to the decision level of x3=1
Assign x7 = 0

x4=1

x12=1

x8=0

x1=0

←new clause

x7=0
x3=1



What’s the big deal?

Conflict clause: x1’+x3+x5’

Significantly prune the search space – 
learned clause is useful forever!

Useful in generating future conflict clauses.

x1

x2

x3x3

x4 x4

x5x5x5 x5



Big Advancements in the Past Decade

(1) SAT: is a Boolean formula f satisfiable?

(2) SMT (Satisfiability Modulo Theory): is a first-order logic formula 
theory-satisfiable?

2004
DPLL(T)

2008
Z3

2009
SMT

1960
DP

»10 var

1962
DLL

» 10 var

1952
Quine
» 10 var

1986
BDD

» 100 Var

1988
SOCRATES
» 3k Var

2001
Chaff

»10k var

2003
MiniSAT
»10k var

1996
GRASP
»1k Var

1997
SATO
» 1k Var

1996
Stålmarck
» 1k Var



Linear Arithmetic
(LIA)

Equality
(EUF)

Lists
(ADT)

The Basic SMT Problem

• Determining the satisfiability of a logical formula with regards to 
some combination of background theories 

 n > 3∗ m  + 1 ∧ ( f (n)  ≤   head (l1) ∨ l2 = f (n) ::  l1 ) 



Background Theories
x = y ⇒ f(x) = f(y) 

2x+y = 0 ∧ 2x−y = 4 ⇒ x = 1 

x+1 ≠ NaN ∧ x < ∞ ⇒ x+1 > x 

4·(x ≫ 2) = x & ∼3 

x = y ·z ∧ z ∈ ab∗ ⇒ |x| > |y| 

i = j ⇒ store(a, i, x) [j] = x 

x ≠ Leaf ⇒ ∃l, r : Tree(α). ∃a : α. x = Node (l, a, r) 

e1 ∈ x  ∧  e2 ∈ x \ e1 ⇒ 
 ∃y, z : Set(α). |y| = |z| ∧ x = y ∪ z ∧ y ≠ ∅ 

(x, y) ∈ r ∧ (y, z) ∈ r ⇒ (x,z) ∈ r

Uninterpreted Funs 

Integer/Real Arithmetic 

Floating Point Arithmetic 

Bit-vectors 

Strings and RegExs 

Arrays

Algebraic Data Types 

Finite Sets 

Finite Relations 
...



CDCL(T): Key Idea

• SAT solver handles Boolean structure of the formula
• Treat each atomic formula as a propositional variable
• Resulting formula is called a Boolean abstraction (B)

• Example
F: (x=z) ˄ ((y=z ˄ x = z+1) ˅ ¬ (x=z))

B(F): b1 ˄ ((b2 ˄ b3) ˅ ¬b1)
Boolean abstraction (B) is defined inductively over formulas
B is a bijective function, B-1 also exists

B-1 (b1 ˄ b2 ˄ b3): (x=z) ˄ (y=z) ˄ (x=z+1)
B-1 (b1 ˅ b2’): (x=z) ˅ ¬(y=z)

b1 b2 b3 b1



CDCL(T): Key Idea

• Use SAT solver to decide satisfiability of B(F)
• If B(F) is Unsat, then F is Unsat 
• If B(F) has a satisfying assignment A, F may still be Unsat

• Example: b1, b2, b3 are not independent propositions!
 SAT solver finds a satisfying assignment A: b1 ˄ b2 ˄ b3
 But, B-1(A) is unsatisfiable modulo theory 

   (x=z) ˄ (y=z) ˄ (x=z+1) is not satisfiable

F: (x=z) ˄ ((y=z ˄ x = z+1) ˅ ¬ (x=z))

B(F): b1 ˄ ((b2 ˄ b3) ˅ ¬b1)
b1 b2 b3 b1

F

B(F)

B(F) is an over-approximation of F



CDCL(T): Simple Version

1. Generate a Boolean abstraction B(F)
2. Use SAT solver to decide satisfiability of B(F)

• If B(F) is Unsat, then F is Unsat
• Otherwise, find a satisfying assignment A

3. Use theory solver to check if B-1(A) is satisfiable modulo T 
• If B-1(A) is satisfiable modulo theory T, then F is satisfiable
• Otherwise, B-1(A) is unsatisfiable modulo T 
     Add ¬A to B(F), and backtrack in SAT

Repeat (2, 3) until there are no more satisfying assignments 



Interacting with SAT/SMT Solvers

Interact 
with 

a solver
A proof is generated. Your program is bug-free! 

A counterexample is generated.
You can use it to fix your program. 

(most of the time) …
Clueless. Basically the solver does not generate 
a result since the search cannot complete. 

Need to consult other approaches, which require formal-method expertise:
Induction proof, find invariants, theorem proving, etc.
If interested, check out 6.512 https://frap.csail.mit.edu/main



Verifying Hardware Designs
• Hardware RTL code works as if a big loop

module divideby3FSM (input clk, input reset, output q); 
  reg [1:0] state, nextstate; 

 always @ (posedge clk) // state register 
    if (reset) state <= 2'b00;
    else state <= nextstate; 

 always @ (*) // next state logic 
    case (state) 
    2'b00: nextstate = 2’b01; 
    2’b01: nextstate = 2’b10; 
    2’b10: nextstate = 2’b00; 
    default: nextstate = 2’b00; 
  endcase 

  assign q = (state == 2'b00); // output logic 
endmodule

A divide-3 FSM



Toolchains to Verify Hardware

module divideby3FSM (input clk, input reset, output q); 
reg [1:0] state, nextstate; 

always @ (posedge clk) // state register
if (reset) state <= 2'b00;
else state <= nextstate; 

always @ (*) // next state logic
case (state) 
2'b00: nextstate = 2’b01; 
2’b01: nextstate = 2’b10; 
2’b10: nextstate = 2’b00; 
default: nextstate = 2’b00; 

endcase

assign q = (state == 2'b00); // output logic 
endmodule

A representation that 
supports symbolic execution

(e.g., Rosette)

Compilation Toolchain
(in Recitation)

Verify hardware as if 
verifying software

Directly use hardware 
verification tools

Verilog code



An Example: Verify ISA Correctness

• Question 1: What assertion should we put into our RTL code?
• Question 2: If I have a 5-stage pipelined processor, when do I place the assertion?
• Question 3: If I want to catch some bypass bugs, how should I initialize the state 

of the processor?

RISC-V Instruction Set Specification 

If interested, check x86 
ISA specification for 

“add”



A Tentative Plan

assign ADD_retiring = (pre.opcode & 16'b1111_1110_0000_0000) == 16'b0001_1000_0000_0000; 
assign ADD_result = pre.R[pre.opcode[8:6]] + pre.R[pre.opcode[5:3]]; 
assign ADD_Rd = pre.opcode[2:0];

assert property (@(posedge clk) disable iff (reset_n) 
ADD_retiring |-> (ADD_result == post.R[ADD_Rd]));

End-to-End Verification of ARM® Processors with ISA-Formal; Reid et al.; CAV’16

The instruction encoding below follows ARM ISA, 
different from RISCV from the last slide.



A Problem: Register Renaming
• A performance optimization to resolve WAW (write-after-write) data 

dependency

• Modern out-of-order processors do register renaming on-the-fly
• Many different implementations, check out 6.823/6.5900

• Problem: How do we verify such processors?

addi r1, r1, 4
ld   r2, 0(r1)
addi r1, r1, 4
ld   r3, 0(r1)
addi r1, r1, 4
ld   r4, 0(r1)

addi r1, r1, 4
ld   r2, 0(r1)
addi r11, r1, 4
ld   r3, 0(r11)
addi r12, r11, 4
ld   r4, 0(r12)

Shadow logic to 
implement correct 

renaming logic



Summary

• Formal Verification: rigor, exhaustiveness, automation

Applications

Solvers

Methods

For hardware verification: often needs domain 
expertise to translate specification to assertions

See some algorithms for SAT and SMT
Understand how complex and unpredictable the 
solver’s performance can be

See symbolic execution as an example
There exist many other approaches: model 
checking, theorem proving, etc.



Next: Recitations 

- RISCV System Programming 
-Hardware Formal Verification Toolchains


