September 26, 2023

Sequential Circuits

And Finite State Machines

Lab 1 checkoff due tomorrow (9/27)
Lab 2 due on Thu (9/28)
Quiz 1 happening on 10/5
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Something We Cannot Build (Yet)

What if you were given the following design specification:

] #1
v When the button is pushed:

1) Turn the light on if it is off
button | 2) Turn the light off if it is on light

The light should change state
within a second of the button press

What makes this device different from
those we’ve discussed before?

State - i.e., the device has memory
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Sequential Circuits

Seqguence of values
Next
Trigger - L,( /\/ _ State
= = Memory >
periodically Device | Current
T A LoAD S Combinational
Logic
Input » Output

Sequential circuits contain digital memory and combinational logic
e Memory stores current state

e Combinational logic computes:
e Next state (from input + current state) Need

e Output bits (from input + current state) loadable

e State changes on LOAD control input memory
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Memory: Using Feedback

Idea: use feedback to maintain storage indefinitely.
Our logic gates are built to restore marginal signal levels, so
noise shouldn’t be a problem!

SN
Result: a bistable
0 )] 0 storage element
Vin Vour
Not affected
VICfor peedback constraint: by noise
inverter pair Vi = Vour

Three solutions: \
« two end-points are stable
« middle point is metastable

;

" VN We'll get back to this!

VouI \
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D Latch

A simple circuit that can hold state

— > :1\|["

CO

7
D X vi¥ vol¥
if C=1, the value of Q holds /
if C=0, the value of D passes to Q
Q  XvaX X°w2
P DL —Q <t_I:D <t_|:D
c c | D Q| q |
0 0 X 0
Q! represents the value - pass

previously held in DL;

Qtrepresents the current value. - hold

0 1 X 1
1 X 0 0
1 X 1 1
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Sequential circuits using D latches?
A terrible idea

Next
State

=
>

Current

L Sl Combinational
Logic

|
@

» Output

Input

= When C=0, D latch passes input to output...
= Creates a cycle from Q to D!
= Our combinational logic stops being combinational ®

= In practice, very hard to get right: Needs tricky
timing constraints on C=0 pulse + comb logic

Memory should sample an instant, not an interval

September 26, 2023 MIT 6.191 Fall 2023 LO6-6



A Similar Problem...

Gate closed Gate open

M How can we ensure
Sequence | :
of values only one car gets
through?
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Solution: Use two gates!

n
AVAN
Sequence
of values
Gate 1: open Gate 1: closed
Gate 2: closed Gate 2: open
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D Flip-Flop

D 3 Qint/,_> Q
cco  c—|DL S DL;<7_’

= Two latches driven by inverted C signals, one is
always holding, and one is always passing

= How does this circuit behave?
= C=0: Qtfollows the input D, but Q holds its old value
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D Flip-Flop

D — \Qint/_: —»Q
c=1 :DL]O_’ D DL

= Two latches driven by inverted C signals, one is
always holding, and one is always passing

= How does this circuit behave?
= C = 0: Q" follows the input D, but Q holds its old value
= C =1: Qnt holds its old value, but Q follows Qint
= Q doesn’t change when C=0 or C=1
= [t changes when C transitions from 0 to 1 (a rising-edge of C)
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D Flip-Flop

D —= int=D —_
D _— =D

= Two latches driven by inverted C signals, one is
always holding, and one is always passing

= How does this circuit behave?
= C = 0: Q" follows the input D, but Q holds its old value
= C =1: Qnt holds its old value, but Q follows Qint
= Q doesn’t change when C=0 or C=1
= [t changes when C transitions from 0 to 1 (a rising-edge of C)

What happens on a falling edge (C: 1 = 0)?
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D Flip-Flop

An edge-triggered storage element

QInt /,_>

:Q D—
DL ~—| DL % kb

C changes periodically (a Clock signal)

t1 t2 t3 Unstable data

[

\\5 ——<_ Metastability

Data is sampled at the rising edge of the clock
and must be stable at that time
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D Flip-Flop Timing

CLK ————
= P2
5. .0 LSETUP = HHOLP
D DX X
CLK —P Q @

=<tpp

= Flip-flop input D should not change around the rising
edge of the clock to avoid metastability
= Formally, D should be a stable and valid digital value:
= For at least tserp before the rising edge of the clock
= For at least t,5, p after the rising edge of the clock

= Flip-flop propagation delay t,y is measured from rising
edge of the clock to valid output (CLK->Q)
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Sequential Circuits using D Flip-Flops

Next
State
>D Q =
D Current
i - D SIEICEN S Combinational
Logic
Input » Output

= There is never a combinational cycle between D
and Q!
= Works correctly, as long as we meet teeryp and tyop
= More on this later
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D Flip-Flop with Write Enable

ElN E|N
D — . —> 10
D Q D —f1 »Q
Clk —> i D D

B B ENEEEE
Clk — ‘\ — 0 X 0] o |
EN / \_ o x 1| q [hod
D_/ \& \ 1 0 X 0 | copy
Q / 1 1 X | 1 input

Data is captured
only if EN is on
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Transitions happen at

rising edge of the clock
No need to specify the
clock explicitly
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How Are Flip-Flops Initialized?

Reset

EN Reset

l l Initial Value
D_—. o EN D
D [— —Q
Clk—{> S
-D

Clk

« When Reset = 1, flip flop is set to initial value
regardless of value of EN

« When Reset = 0, then it behaves like a D flip-flop
with enable
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Using D Flip-Flops to Build
Sequential Circuits
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Synchronous Sequential Circuits

= All the D Flip-Flops use the same periodic clock signal

= Register: Group of DFFs

= Stores multi-bit values
= Registers update their contents simultaneously, at the

rising edge of the clock

D, —{ DFF
N\

—>QO

]

CLK

f,.—| DFF

- Qn-l
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Synchronous Sequential Circuits

= Synchronous sequential circuits: All state kept in
registers driven by the same clock

= This allows discretizing time into cycles and
abstracting sequential circuits as finite state

machines (FSMs)

= FSMs can be described with state-transition
diagrams or truth tables

Current

-J_LI1 docﬁﬁ%

state

input

Combinational
logic

Next
state

> output

September 26, 2023

MIT 6.191 Fall 2023

LO6-19



A Simple Sequential Circuit

Let’s make a digital binary Combination Lock:

IN—

> U
>Lock

CLK—

Specification:
e A 1-bit input ( “0” or “17)
e A 1-bit output (“Unlock” signal)
e UNLOCK is 1 if and only if:
Last 4 inputs were the “combination”: 0110

How many states do we need?
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State-Transition Diagram

Heavy circle
Means
ani INITIAL state
Designing our lock VAME
e Need an initial state; call it SO. of state
e Must have a separate state for each @ O\
step of the proper entry sequence «
P Prop v 5eq OUTPUT INPUT
e Must handle other (erroneous) when in this causing
entries state transition
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Valid State-Transition Diagrams

= Arcs leaving a state must be:

(1) mutually exclusive
— For a given input value, can’t have two choices

(2) collectively exhaustive

— Every state must specify what happens for each
possible input combination

- "Nothing happens” means arc back to itself
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Two-Bit Counter
An Example

o r O =~ O = O

ee0 0 Current Next
State State
0O 0 O 0
0O 0 1 0
O 1 O 1
| 0 1 1 1
inc=0 inc=0 100 0
State-Transition Diagram 1 0 1 1
qo**! = ~inc-g@* + inc-~qg@" 1 1 g ;
= inc @ go"
ql**! = ~inc-gq1* + inc-~gl1t-g@* + inc-qlt-~qge*
= ~inc-ql® + inc-(ql* @ got)
Output = current state = qlqgo
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Two-Bit Counter Circuit
Using D flip-flops

qo*! = ~inc-g@* + inc-~qg@"
ql®! = ~inc-ql® + inc-(gl* @ qo%)

t+1 _
= Use two D flip-flops with reset q@t+1 . .
and enable to store g0 and g1l ql ql- @ qo

I
2
Q
QY
+
(S
H.
>
(@
Il
=

= The state only changes when
incis 1. Let’s connect inc to EN [ l
and simplify the equations | D
" o JngeQ
A\ R
. Outqu is qlq0 | o_i;E)Vqu —»)D
= Set Initial Value of both flip- AR >
flops to O (initial state: 00) -

= |oaded when Reset = 1
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Timing Constraints In
Sequential Circuits
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Recap: D Flip-Flop Timing

CLK
D—D Q—Q 2 Lserup i 2liop
D
CLK —P : | E
Q i,
e <t >

= Flip-flop input D should not change around the rising edge of
the clock to avoid metastability

= Formally, D should be a stable and valid digital value:
= For at least tgep before the rising edge of the clock
= For at least t,g p after the rising edge of the clock

= Flip-flop propagation delay t,5 is measured from rising edge
of the clock to valid output (CLK->Q)
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Single-clock Synchronous Circuits

Current Next
i state .
Combinational state
—I_I—I_I cIockzF logic
input ” > output
C\) Need to analyze
~ the timing of each
—il register-to-register path
_/

==

clk
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Meeting the Setup-Time Constraint

Lok 4
D D
L FF1 L FF2

CLK

= To meet FF2's setup time,

Ztsetup,Fr2

tcrxk = tpprr1 T tepcL + tseTUP FF2

= The slowest register-to-register path in the system
determines the clock;

= Equivalently, a given register technology and clock limit
the amount of combinational logic between registers
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Meeting the Hold-Time Constraint

CL
D 5 gt 2e 3 P - Yo, Fr1 Tep,Fr1
L FF1 L FF2 oy &8 A
i tC CL
o, B
2toLp,Fr2

= Hold time (tyo p) constraint of FF2 may be violated if D,
changes too quickly

= Propagation delay (tpp), the upper bound on time from valid
inputs to valid outputs, does not help us analyze hold time!

= Contamination delay (t-p) is the lower bound on time from
input-to-output transition (invalid input to invalid output)

= To meet FF2’s hold-time constraint Tools may need to add
logic to fast paths to
tep,rr1 T tepcL 2 tHoLD FF2 meet to,n
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Timing Summary

= For a sequential circuit to work properly, we must guarantee
that the setup time and hold time constraints of every
register will always be satisfied.

= The setup time constraint is affected by both the logic in the
circuit and the clock period. To fix violations, either:
= Change the logic to be faster (lower tpp)
= Change the clock to be slower (higher t k)

= The hold time constraint is affected only by the logic in the
circuit.
= Changing the clock period will not fix violations.

= Sum of contamination delays must be greater than the register hold
time, otherwise the circuit won't work.

= If hold time is satisfied, then the fastest clock period can be
set as the maximum sum of the propagation delays plus
setup time across all register-to-register paths.
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Sequential Circuit Timing Example

tCD,Reg = 1ns
> tpp,Reg = 3NS

tSetup,Reg = 2ns

tHoId,Reg = 2ns
_|_|_|_| Clock ~

Y

Current
State

Z 5

. Next
State

> >

n

Input

Questions:

Output

e Constraints on t. for the logic?
tep,reg (1 NS) + tep c(?) = tyoig,req(2 NS)

tepc. 2 1 s

e Minimum clock period?

teik 2 tepregtep oLt tsetupreg = 10NS
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Thank you!

Next lecture:
Sequential logic in Minispec
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