
Caches

October 24, 2023 MIT 6.004 Fall 2023 L13-1

Reminders:
• Lab 5 released today
• Lab 6 to be released on Thursday
• We urge you to get lab 5 done as

soon as possible to ensure you have
enough time for lab 6 which is a
difficult lab.

The Memory Hierarchy

Want large, fast, and cheap memory, but…
Large memories are slow (e.g., Hard Disk)
Fast memories are small and expensive (e.g., SRAM)

Solution: Use a hierarchy of memories with different
tradeoffs to fake a large, fast, cheap memory

MemCPU Mem Mem

Speed:
Capacity:

Cost:

Fastest
Smallest
Highest

Slowest
Largest
Lowest

Mem

Fast
Large
Cheap

≈

October 24, 2023 MIT 6.004 Fall 2023 L13-2

Memory Hierarchy Interface

§ Programming model: Single memory, single address
space

CPU Mem

October 24, 2023 MIT 6.004 Fall 2023 L13-3

Memory Hierarchy Interface

§ Programming model: Single memory, single address
space

§ Machine transparently stores data in fast or slow
memory, depending on usage patterns

10 GB
DRAM

CPU
100
KB

SRAM

1 TB
Hard
Disk

L1 Cache Main memory Swap space

October 24, 2023 MIT 6.004 Fall 2023 L13-4

Caches

§ Cache: A small, interim storage component that
transparently retains (caches) data from recently
accessed locations

§ Processor sends accesses to cache. Two options:
§ Cache hit: Data for this address in cache, returned quickly
§ Cache miss: Data not in cache

§ Fetch data from memory, send it back to processor
§ Retain this data in the cache (replacing some other

data)
§ Processor must deal with variable memory access time

CPU Cache Main
Memory

Address
Data

Address
Data

October 24, 2023 MIT 6.004 Fall 2023 L13-5

Why Caches Work

§ Two predictable properties of memory accesses:
§ Temporal locality: If a location has been accessed recently,

it is likely to be accessed (reused) soon

§ Spatial locality: If a location has been accessed recently,
it is likely that nearby locations will be accessed soon

§ Result:
§ High hit rate (low miss ratio)
§ Reduced Average Memory Access Time (AMAT):

AMAT = HitTime + MissRatio × MissPenalty

October 24, 2023 MIT 6.004 Fall 2023 L13-6

Basic Cache Algorithm (Reads)

(1-HR)

Tag Data

A

B

Mem[A]

Mem[B]

Q: How do we “search” the cache?

CPU

Main
Memory

On reference to Mem[X],
look for X among cache tags

HIT: X = Tag(i)
for some

cache line i

MISS: X not
found in Tag

of any cache line

Return Data(i) Read Mem[X]
Return Mem[X]
Select a line k

to hold Mem[X]
Write Tag(k)=X,

Data(k) = Mem[X]
October 24, 2023 MIT 6.004 Fall 2023 L13-7

00000000000000000000000011101000

Direct-Mapped Caches

§ Each word in memory maps into a single cache line
§ Access (for cache with 2W lines):

§ Index into cache with W address bits (the index bits)
§ Read out valid bit, tag, and data
§ If valid bit == 1 and tag matches upper address bits, HIT

§ Example 8-line
direct-mapped cache: Tag (27 bits)Valid bit Data (32 bits)

32-bit BYTE address

Index
bits

Tag
bits

Byte
offset
bits =? HIT

0
1
2
3
4
5
6
7

October 24, 2023 MIT 6.004 Fall 2023 L13-8

Example: Direct-Mapped Caches
64-line direct-mapped cache à 64 indices à 6 index bits

1

1

1

1

0

1

0x000058

0x000058

0x000058

0x000040

0x000007

0x000058

0xDEADBEEF

0x00000000

0x00000007

0x42424242

0x6FBA2381

0xF7324A32

Tag (24 bits)Valid bit Data (32 bits)
0

1

2

3

4

63

… ……

Read Mem[0x400C]

HIT, DATA 0x42424242

Part of the address (index bits) is encoded in the location
Tag + Index bits unambiguously identify the data’s address

0100 0000 0000 1100

TAG: 0x40
INDEX: 0x3
BYTE OFFSET: 0x0

Would 0x4008 hit?
INDEX: 0x2 → tag mismatch
 → MISS

October 24, 2023 MIT 6.004 Fall 2023 L13-9

Selection of Index Bits

§ Why do we choose low order bits for index?
§ Helps take advantage of locality
§ Allows consecutive memory locations to live in the cache

simultaneously
§ Reduces likelihood of replacing data that may be accessed

again in the near future

October 24, 2023 MIT 6.004 Fall 2023 L13-10

§ Take advantage of spatial locality: Store multiple
words per data line
§ Words in a block come from consecutive memory locations
§ Fetch entire block from memory and replace entire cache line
§ Another advantage: Reduces size of tag memory!
§ Potential disadvantage: Fewer indices in the cache

§ Example: 4-block, 16-word direct-mapped cache

Block Size

Tag (26 bits)Valid bit Data (4 words, 16 bytes)

Index bits: 2
(4 indices)

Tag bits: 26 (=32-6) Block offset bits: 2
(4 words/block)

32-bit BYTE address 3 2 1 0

Byte offset bits: 2
October 24, 2023 MIT 6.004 Fall 2023 L13-11

Block Size Tradeoffs
§ Larger block sizes…

§ Take advantage of spatial locality
§ Incur larger miss penalty since it takes longer to transfer

the block from memory
§ Can increase the average hit time and miss ratio

§ AMAT = HitTime + MissPenalty*MissRatio

Block Size

Miss Penalty AMAT

Block Size

Increased miss penalty
and miss rate

Miss Ratio

Block Size

Exploits spatial locality

Fewer blocks,
compromises
temporal locality

~64 bytes

October 24, 2023 MIT 6.004 Fall 2023 L13-12

Loop A:
 Code at

1024,
data at
37

Direct-Mapped Cache Problem:
Conflict Misses

Assume:

 1024-line DM cache

 Block size = 1 word
Consider looping code, in

steady state
Assume WORD, not BYTE,

addressing

Word
Address

1024
37

1025
38

1026
39

1024
37
…

Cache
Line index

0
37
1
38
2
39
0
37

Hit/
Miss
HIT
HIT
HIT
HIT
HIT
HIT
HIT
HIT

Inflexible mapping
(each address can only be
in one cache location) à
Conflict misses (multiple
addresses map to same
cache index)!

Loop B:
 Code at

1024,
data at
2048

1024
2048
1025
2049
1026
2050
1024
2048

...

0
0
1
1
2
2
0
0

MISS
MISS
MISS
MISS
MISS
MISS
MISS
MISS

October 24, 2023 MIT 6.004 Fall 2023 L13-13

Fully-Associative Cache

Opposite extreme: Any address can be in any location
§ No cache index!
§ Flexible (no conflict misses)
§ Expensive: Must compare tags of all entries in parallel to

find matching one

32-bit BYTE address

=?

=?
=?

=?

Tag bits Block offset bits

Tag Valid
bit Data

…… … … … …

3 2 1 0

Byte offset bits
October 24, 2023 MIT 6.004 Fall 2023 L13-14

N-way Set-Associative Cache

§ Use multiple direct-mapped caches in parallel to reduce
conflict misses
§ Nomenclature:

§ # Rows = # Sets
§ # Columns = # Ways
§ Set size = #ways

= “set associativity”
(e.g., 4-way à 4 lines/set)

§ Each address maps to
only one set, but can be
in any way within the set

§ Tags from all ways
are checked in parallel

§ Fully-associative cache: Extreme case with a single set and as
many ways as cache lines

TagData TagDataTagData TagData

8
se

ts

4 ways

=? =? =? =?

INCOMING ADDRESS

IndexTag

SET

WAY

October 24, 2023 MIT 6.004 Fall 2023 L13-15

Issue: Replacement Policy

Associativity Implies Choices

address

Fully associative

address

Direct-mapped

N
address

N-way set-associative

• Compare addr
with only one tag

• Location A can be
stored in exactly
one cache line

• Compare addr with N
tags simultaneously

• Location A can be
stored in exactly one
set, but in any of the
N cache lines
belonging to that set

• Compare addr with
each tag
simultaneously

• Location A can be
stored in any cache
line

October 24, 2023 MIT 6.004 Fall 2023 L13-16

Replacement Policies

§Optimal policy: Replace the line that is accessed furthest in the
future

§ Requires knowing the future…
§ Idea: Predict the future from looking at the past

§ If a line has not been used recently, it’s often less likely to be
accessed in the near future (a locality argument)

§ Least Recently Used (LRU): Replace the line that was accessed
furthest in the past

§ Works well in practice
§ Need to keep ordered list of N items → N! orderings
→ O(log2N!) = O(N log2N) “LRU bits” + complex logic

§ Caches often implement cheaper approximations of LRU
§Other policies:

§ First-In, First-Out (least recently replaced)
§ Random: Choose a candidate at random

§ Not very good, but does not have adversarial access patterns
October 24, 2023 MIT 6.004 Fall 2023 L13-17

Write Policy

Write-through: CPU writes are cached, but also written to
main memory immediately (stalling the CPU until write is
completed). Memory always holds current contents

§ Simple, slow, wastes bandwidth

Write-back: CPU writes are cached, but not written to main
memory until we replace the line. Memory contents can be
“stale”

§ Fast, low bandwidth, more complex
§ Commonly implemented in current systems

October 24, 2023 MIT 6.004 Fall 2023 L13-18

Example: SW Cache Write-Hit
16-line direct-mapped cache à 4 index bits
Block size = 4 à 2 block offset bits
Write Policy = Write Back
Write word: 0x09 to 0x4818

0100 1000 0001 1000

Tag: 0x48
Index: 0x1
Block Off: 2
Byte Off: 0x0

0

0

0

0x48 0x01

Tag (24 bits)V Line (4 words, 16 bytes)

3 2 1 0

1

1

0

D

2

0x02 0x03 0x040x091

D=1: cache contents no longer match main
memory so write back line to memory upon
replacement

…… … …… … …

0

1

15

October 24, 2023 MIT 6.004 Fall 2023 L13-19

Example: SB Cache Write-Hit
16-line direct-mapped cache à 4 index bits
Block size = 4 à 2 block offset bits
Write Policy = Write Back
Write byte: 0x09 to 0x481A

0100 1000 0001 1010

Tag: 0x48
Index: 0x1
Block Off: 2
Byte Off: 0x2

0

0

0

0x48 0x01

Tag (24 bits)V Line (4 words, 16 bytes)

3 2 1 0

1

1

0

D

2

0x02 0x03 0x040x0900021 …… … …… … …

0

1

15

October 24, 2023 MIT 6.004 Fall 2023 L13-20

Example: SW Cache Write-Miss

Tag: 0x48
Index: 0x1
Block Off: 2
Byte Off: 0x0

Write: 0x09 to 0x4818

1. Tags don’t match -> Miss
§ D=1: Write cache line 1 (tag = 0x280: addresses

0x28010-0x2801C) back to memory
§ If D=0: Don’t need to write line back to memory.

2. Load line (tag = 0x48: addresses 0x4810-0x481C) from
memory

3. Write 0x09 to 0x4818 (block offset 2), set D=1.

0

1

0

0x20

0x280

0x100

0x21

Tag (24 bits)V Line (4 words, 16 bytes)

3 2 1 0

1

1

0

D

2

0x32 0x43 0x54…… … …… … …

0

1

15

0100 1000 0001 1000

0x040x030x020x010x480 0x091

October 24, 2023 MIT 6.004 Fall 2023 L13-21

Summary: Cache Tradeoffs

§ Cache size

§ Block size

§ Associativity

§ Replacement policy

§ Write policy

AMAT = HitTime + MissRatio × MissPenalty

October 24, 2023 MIT 6.004 Fall 2023 L13-22

Example: Comparing Hit Rates
3 Caches: DM, 2-Way, FA: each has 8 words, block size=1, LRU
Access following addresses repeatedly: 0x0, 0x10, 0x4, 0x24

DM 2-Way FA

0x0 = 0b000000
DM index = 000
2-Way index = 00

M[0x0]

M[0x10]

M[0x0] M[0x0]M[0x10]

M[0x10]M[0x4] M[0x4]

M[0x4]

M[0x24] M[0x24]

M[0x24]

0x10 = 0b010000
DM index = 100
2-Way index = 00

0x4 = 0b000100
DM index = 001
2-Way index = 01

0x24 = 0b100100
DM index = 001
2-Way index = 01

M[0x4]

DM: 50% hit rate
2-Way: 100% hit rate
FA: 100% hit rate

October 24, 2023 MIT 6.004 Fall 2023 L13-23

Example 2: Comparing Hit Rates
Access: 0x0, 0x4, 0x8, 0xC, 0x10, 0x14, 0x18, 0x1C,
0x20 repeatedly

M[0x0]
M[0x20]
M[0x4]
M[0x8]
M[0xC]
M[0x10]
M[0x14]
M[0x18]
M[0x1C]

DM
M[0x0]
M[0x20]
M[0x10]
M[0x4]
M[0x8]
M[0xC]

M[0x10]
M[0x0]
M[0x20]
M[0x14]
M[0x18]
M[0x1C]

2-Way

M[0x4] M[0x0]

M[0x8] M[0x4]

M[0xC] M[0x8]

M[0x10] M[0xC]

M[0x14] M[0x10]

M[0x18] M[0x14]

M[0x1C] M[0x18]

M[0x0] M[0x20]

FA

DM: Hit rate = 7/9 2-Way: Hit rate = 6/9 FA: Hit rate = 0%

October 24, 2023 MIT 6.004 Fall 2023 L13-24

Example 3: Comparing Hit Rates
Access: 0x0, 0x4, 0x8, 0xC, 0x20, 0x24, 0x28, 0x2C, 0x10
repeatedly

M[0x0]
M[0x20]
M[0x4]
M[0x24]
M[0x8]
M[0x28]
M[0xC]
M[0x2C]
M[0x10]

DM
M[0x0]
M[0x10]
M[0x20]
M[0x4]
M[0x8]
M[0xC]

M[0x20]
M[0x0]
M[0x10]
M[0x24]
M[0x28]
M[0x2C]

2-Way

M[0x4] M[0x0]

M[0x8] M[0x4]

M[0xC] M[0x8]

M[0x20] M[0xC]

M[0x24] M[0x20]

M[0x28] M[0x24]

M[0x2C] M[0x28]

M[0x0] M[0x10]

FA

DM: Hit rate = 1/9 2-Way: Hit rate = 6/9 FA: Hit rate = 0%
October 24, 2023 MIT 6.004 Fall 2023 L13-25

Thank you!

Next lecture: Pipelined
Processors

October 24, 2023 MIT 6.004 Fall 2023 L13-26

