
Reliability Solutions +
Rowhammer Mitigations

Peter Deutsch

Spring 2025

Based on slides from Prof. Mengjia Yan

Recap Physical Attacks

2

Why is the debug port
so easily accessible?

3

Fixed Design (Static) Flexible Design (Dynamic)

Security? Usability?

Mitigation Design Considerations

Cost?

Performance?

Physical Attack Mitigation Case Study

• IBM 4758

• Satisfy FIPS 140-1 Level 4

4

Photo of IBM 4758 Cryptographic Coprocessor (courtesy of Steve Weingart)

from https://www.cl.cam.ac.uk/~rnc1/descrack/ibm4758.html

A Dedicated Attacker Can Mount Invasive
Attacks!

5
How microprobing can attack encrypted memory; Sergei Skorobogatov; University of Cambridge

Physical Tamper Resistance

• Make it difficult for the attackers to get access to the chip…

Make enclosure very robust.
Upon opening lid, disconnect power supply.

Drill through the lid

Photocells and tilt devices

Tamper Detection Tampering Evident

“Potting" the device in a block of epoxy resin

Patience: Scrape away the epoxy

Tamper-sensing barriers:
nichrome wire wound around the device

6

IBM 4758 Secure Co-Processor

• Clock Glitching
• Use phase locked loops and

independently generated internal clocks

• Voltage Glitching:
• Add detection and monitor circuits to

watch for voltage changes

• X-ray fault injection:
• A radiation sensor

• Electromagnetic side channels:
• Solid aluminium shielding and a low-pass

filter (a Faraday cage)

Photo of IBM 4758 Cryptographic Coprocessor (courtesy of Steve Weingart)
from https://www.cl.cam.ac.uk/~rnc1/descrack/ibm4758.html

Expensive. Other secure processors only
focus on a limited set of physical attacks.

7

Recap Fault Injection Attacks

8

What is the
biggest challenge

here for the
attacker?

Make Fault Injection Difficult

• Attacker’s challenges:
• Having control over the timing and the location of the fault

• What can be the high-level attack strategies?
• Approach 1: Randomization to make the control more difficult

• Approach 2: Detect anomalous behaviors of the system and block it (e.g., ECC)

9

Software-Based Approaches:
A collection of lessons from OpenTitan projects

10

Slides adapted from:

Miles Dai <milesdai@zerorisc.com>
zeroRISC Inc.

Arun Thomas
zeroRISC Inc., VP Engineering

Dominic Rizzo
zeroRISC Inc., CEO
OpenTitan Project Director

OpenTitan Overview

• Goal: Establish Root of Trust, validate platform integrity (similar to TPM)

• Boot ROM: Configure critical hardware and verify next boot stage
• Hardened C code

11OpenTitan Earl Grey Datasheet

https://opentitan.org/book/hw/top_earlgrey/doc/specification.html

Hardware-Assisted Fault Detection

12

How can we protect
ourselves against bit-

flips in the register
file?

• We can add an ECC to the
register file to detect when
a value has changed.

• What are the costs
associated with ECC?

Challenge: When should we check ECC?

13

• We can’t verify the entire contents
of the ECC-protected register file
every cycle…

• Idea: Verify the ECC immediately
before reading a register.

• Challenge: Pipeline signaling is
complicated, and a ”register read”
doesn’t always come from the
register file!

• CVE-2024-57037: Pipeline
forwarding signal is misread,
leading to ECC checks being
skipped.

What can feasibly be done via fault injection?

The OpenTitan team has identified that some attacks are easier to
perform than others!

• Easy
• Skip one instruction

• Glitch a register to all 0’s or 1’s

• Hard
• Set a register to a specific value

• Multiple precisely-timed glitches

• Skipping a precise number of instructions

14

Example 1: Multi-bit Encodings

15

Make the attacker’s life more difficult:

Instead of requiring the attacker to glitch a register to all 0’s or 1’s, force them
to set a register to a specific value…

Multi-bit (MUBI) Encodings

enum lifecycle_state {

// Unlocked test state with debug functions.

kLcStateTest,

// Production life cycle state.

kLcStateProd,

// RMA life cycle state.

kLcStateRma,

};

16

enum lifecycle_state {

// Unlocked test state with debug functions.

kLcStateTest = 0xb2865fbb,

// Production life cycle state.

kLcStateProd = 0x65f2520f,

// RMA life cycle state.

kLcStateRma = 0xcf8cfaab,

};

What integers do we
use under the hood?

Multi-bit (MUBI) Encodings

/**
* Lifecycle states.

*

* This is a condensed version of the 24 possible life cycle states where

* TEST_UNLOCKED_* states are mapped to `kLcStateTest` and invalid states where

* CPU execution is disabled are omitted.
*

* Encoding generated with

* $./util/design/sparse-fsm-encode.py -d 6 -m 5 -n 32 \

* -s 2447090565 --language=c

*
* Minimum Hamming distance: 13

* Maximum Hamming distance: 19

* Minimum Hamming weight: 15

* Maximum Hamming weight: 20

*/
typedef enum lifecycle_state {

/**

* Unlocked test state where debug functions are enabled.

*/

kLcStateTest = 0xb2865fbb,
/**

* Development life cycle state where limited debug functionality is

* available.

*/

kLcStateDev = 0x0b5a75e0,
…

} lifecycle_state_t;

lifecycle.h
17

https://github.com/lowRISC/opentitan/blob/607cf1d60f59035b8976f102b6d8f8dc665f1940/sw/device/silicon_creator/lib/drivers/lifecycle.h

Example 2: Hash Checking

18

Hash Checking

typedef struct hmac_digest {

uint32_t digest[8];

} hmac_digest_t;

typedef struct boot_data {

hmac_digest_t digest; // SHA-256 digest of boot data.

uint32_t min_security_version_rom_ext;

uint32_t min_security_version_bl0;

} boot_data_t;

19

How to ensure 8
words in the digest

are checked?

Hash Checking

static const uint32_t shares[8] = {

0xe021e1a9, 0xf81e8365, 0xbf8322db, 0xc7a37080,

0xdd8ce33f, 0x7585d574, 0x951777af, 0x271a933f,

};

20

Pre-compute shares

Hash Checking

static const uint32_t shares[8] = {

0xe021e1a9, 0xf81e8365, 0xbf8322db, 0xc7a37080,

0xdd8ce33f, 0x7585d574, 0x951777af, 0x271a933f,

};

bool check_digest(const boot_data_t *boot_data) {

rom_error_t error = 0;

hmac_digest_t act_digest;

boot_data_digest_compute(boot_data, &act_digest);

}

21

Pre-compute shares

Compute the digest

Hash Checking

static const uint32_t shares[8] = {

0xe021e1a9, 0xf81e8365, 0xbf8322db, 0xc7a37080,

0xdd8ce33f, 0x7585d574, 0x951777af, 0x271a933f,

};

bool check_digest(const boot_data_t *boot_data) {

rom_error_t error = 0;

hmac_digest_t act_digest;

boot_data_digest_compute(boot_data, &act_digest);

for (size_t i = 0; i < 8; ++i) {

error ^= boot_data->digest[i] ^ act_digest[i] ^ shares[i];

}

return error == kErrorOk; //kErrorOk is the xored result of the shares

}

22

Generate the valid
error value from the

shares.

Pre-compute shares

Compute the digest

Hash Checking

static const uint32_t shares[8] = {

0xe021e1a9, 0xf81e8365, 0xbf8322db, 0xc7a37080,

0xdd8ce33f, 0x7585d574, 0x951777af, 0x271a933f,

};

bool check_digest(const boot_data_t *boot_data) {

rom_error_t error = 0;

hmac_digest_t act_digest;

boot_data_digest_compute(boot_data, &act_digest);

for (size_t i = 0; i < 8; ++i) {

error ^= boot_data->digest[i] ^ act_digest[i] ^ shares[i];

}

return error == kErrorOk; //kErrorOk is the xored result of the shares

}

23

Generate the valid
error value from the

shares.

Pre-compute shares

Compute the digest

Any additional
hardening

opportunities?

Example 3: Redundant Condition Checks

24

Force the attacker:

Skip one instruction → Skipping a precise number of instructions

Redundant Condition Checks

if (lc_state != kLcStateProd) {

assert();

}

25

Redundant Condition Checks – First Attempt

if (lc_state != kLcStateProd) {

assert();

}

assert(lc_state == kLcStateProd);

26

Will this work?

Redundant Condition Checks - launder32

inline uint32_t launder32(uint32_t val) {

asm volatile("" : "+r"(val));

return val;

}

27
hardened.h

https://github.com/lowRISC/opentitan/blob/7d5f36f4e351197ba435d289a5849ea4721640d5/sw/device/lib/base/hardened.h

Redundant Condition Checks

if (launder32(lc_state) != LcStateProd) {
assert();

}
HARDENED_CHECK_EQ(lc_state, LcStateProd);

28

A custom macro that
1) produces the bne/beq instruction

directly with inline assembly and
2) adds some unimp padding

afterwards.

Redundant Condition Checks

29

C Assembly

 if (launder32(lc_state_check) != lc_state) {
 HARDENED_TRAP();
 }
 HARDENED_CHECK_EQ(lc_state_check, lc_state);

Redundant Condition Checks

30

C Assembly

if (launder32(lc_state_check) != lc_state) {
HARDENED_TRAP();

 }
 HARDENED_CHECK_EQ(lc_state_check, lc_state);

/proc/self/cwd/sw/device/silicon_creator/rom/rom.c:306
if (launder32(lc_state_check) != lc_state) {
91b0: lw a2,-390(s1)
91b4: beq a1,a2,91c4

/proc/self/cwd/sw/device/silicon_creator/rom/rom.c:307
HARDENED_TRAP();
91b8: unimp
91ba: unimp
91bc: unimp
91be: unimp

Redundant Condition Checks

31

C Assembly

if (launder32(lc_state_check) != lc_state) {
HARDENED_TRAP();

 }
HARDENED_CHECK_EQ(lc_state_check, lc_state);

/proc/self/cwd/sw/device/silicon_creator/rom/rom.c:306
if (launder32(lc_state_check) != lc_state) {
91b0: lw a2,-390(s1)
91b4: beq a1,a2,91c4

/proc/self/cwd/sw/device/silicon_creator/rom/rom.c:307
HARDENED_TRAP();
91b8: unimp
91ba: unimp
91bc: unimp
91be: unimp

/proc/self/cwd/sw/device/silicon_creator/rom/rom.c:309
HARDENED_CHECK_EQ(lc_state_check, lc_state);
91c0: lw a1,-390(s1)
91c4: beq a0,a1,91d0
91c8: unimp
91ca: unimp
91cc: unimp
91ce: unimp

RowHammer Mitigations:
A Numbers Game

Row of Cells

Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row

Hammered RowOpenedClosed

Recap RowHammer

33

Observation: Repeatedly accessing a row enough times
between refreshes can cause disturbance errors in nearby rows

Probabilistic Row Activation

34

Row of Cells

Row
Row
Row
Row

Victim Row

Victim Row

Hammered Row

• Pick a probability “𝑝”

• Question: how to pick “𝑝”?
What is the consequence?

Kim et al; Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors; ISCA’14

Counter-based Row Activation

35

• Maintain a counter to track the number of accesses per row
• Increment the counter when accessing a row

• When reaching a threshold, activate the neighboring rows

• After activating, reset the counter

• How much storage overhead for the row-access counters?
• Example: 8GB memory with 1M rows, each counter 2 bytes

• Answer?

• What factors affect the performance overhead?

Architectural Support for Mitigating Row Hammering in DRAM Memories; Kim et al; CAL’15

SRAM-based Trackers

• Naïve: one counter per row
• What is the problem?

• Do it smartly: using the Misra-Gries Algorithm
• The Rowhammer tracking problem is very similar to the

frequent elements problem

• Given a stream of 𝑾 items, the algorithm identifies all
the items that appear more than 𝑻 times, as long as

𝑵𝒆𝒏𝒕𝒓𝒚 > ൗ𝑾 𝑻− 𝟏

36Graphene: Strong yet Lightweight Row Hammer Protection; Park et al; MICRO’20

Row Address Count

0x1010 5

0x2020 7

… …

Spillover Count 2

𝑁
𝑒
𝑛
𝑡𝑟
𝑦

Graphene Aggressor Tracking

37

Row address

Increment the
estimated count by

one

Insert new row address
in that entry

Already in the
table? (hit)

Any entry with the
same value as the
spillover count?

Increment the spillover
count

N

Y
Y

N

Row Address Count

0x1010 5

0x2020 7

0x3030 3

ACT
(0x1010)

ACT
(0x4040)

ACT
(0x5050)

Spillover Count 2

Time

Row Address Count

0x1010 6

0x2020 7

0x3030 3

Spillover Count 2

Row Address Count

0x1010 6

0x2020 7

0x3030 3

Spillover Count 3

Row Address Count

0x1010 6

0x2020 7

0x5050 4

Spillover Count 3

8

Graphene Analysis

𝑵𝒆𝒏𝒕𝒓𝒚 > ൗ𝑾 𝑻 − 𝟏

• In the original paper (2020)
• 𝑾 Max number of ACTs in a refresh window: 1,360K
• 𝑻 Threshold for aggressor tracking: 12.5K (actual threshold = 25K)
• 𝑵𝒆𝒏𝒕𝒓𝒚 Number of table entries: 108
• Each entry: 16 bits for row address; 15 bits for counting value up to 𝑻
• Memory type: CAM

• In a recent paper, assuming 16GB memory (2022)
• 𝑻 Threshold for aggressor tracking: 250 (actual threshold = 500)
• 𝑵𝒆𝒏𝒕𝒓𝒚 Number of table entries: 5440 (50x more)

38

More Ideas: Hydra

• Profile a lot of applications and find Rowhammer is a race against time
• Access many rows few times ✓

• Access few rows many times ✓

• Access many rows many times ✗

39Hydra: Enabling Low-Overhead Mitigation of Row-Hammer at Ultra-Low Thresholds via Hybrid Tracking; Qureshi et al; ISCA’22

Key idea: use DRAM to get
scalable tracking, and SRAM to
avoid performance overheads

40

Fixed Design (Static) Flexible Design (Dynamic)

Security? Usability?

Mitigation Design Considerations

Cost?

Performance?

	Default Section
	Slide 1: Reliability Solutions + Rowhammer Mitigations

	Physical Attack Mitigations
	Slide 2: Recap Physical Attacks
	Slide 3: Mitigation Design Considerations
	Slide 4: Physical Attack Mitigation Case Study
	Slide 5: A Dedicated Attacker Can Mount Invasive Attacks!
	Slide 6: Physical Tamper Resistance
	Slide 7: IBM 4758 Secure Co-Processor

	Software-level Mitigation
	Slide 8: Recap Fault Injection Attacks
	Slide 9: Make Fault Injection Difficult
	Slide 10: Software-Based Approaches: A collection of lessons from OpenTitan projects
	Slide 11: OpenTitan Overview
	Slide 12: Hardware-Assisted Fault Detection
	Slide 13: Challenge: When should we check ECC?
	Slide 14: What can feasibly be done via fault injection?
	Slide 15: Example 1: Multi-bit Encodings
	Slide 16: Multi-bit (MUBI) Encodings
	Slide 17: Multi-bit (MUBI) Encodings
	Slide 18: Example 2: Hash Checking
	Slide 19: Hash Checking
	Slide 20: Hash Checking
	Slide 21: Hash Checking
	Slide 22: Hash Checking
	Slide 23: Hash Checking
	Slide 24: Example 3: Redundant Condition Checks
	Slide 25: Redundant Condition Checks
	Slide 26: Redundant Condition Checks – First Attempt
	Slide 27: Redundant Condition Checks - launder32
	Slide 28: Redundant Condition Checks
	Slide 29: Redundant Condition Checks
	Slide 30: Redundant Condition Checks
	Slide 31: Redundant Condition Checks

	RowHammer Mitigations
	Slide 32: RowHammer Mitigations: A Numbers Game
	Slide 33: Recap RowHammer
	Slide 34: Probabilistic Row Activation
	Slide 35: Counter-based Row Activation
	Slide 36: SRAM-based Trackers
	Slide 37: Graphene Aggressor Tracking
	Slide 38: Graphene Analysis
	Slide 39: More Ideas: Hydra
	Slide 40: Mitigation Design Considerations

