
Hardware Bugs and Fuzzing

Mengjia Yan

Spring 2025

sysret slides credit: Will Liu (MIT)



What is Errata?

https://www.intel.com/content/www/us/en/products/docs/processors/core/8th-gen-core-spec-update.html

It is a compilation of device and document errata and 
specification clarifications and changes, which is intended for 
hardware system manufacturers and for software developers 
of applications, operating system, and tools. 

Errata are design defects or errors. Errata may cause the 
processor’s behavior to deviate from published specifications. 
Hardware and software designed to be used with any given 
stepping must assume that all errata documented for that 
stepping are present on all devices. 

2



Errata Table Example

3



More Errata Occasionally, AMD identifies product errata that cause the processor to 
deviate from published specifications. Descriptions of identified product 
errata are designed to assist system and software designers in using the 
processors described in this revision guide. This revision guide may be 
updated periodically.

https://www.amd.com/system/files/TechDocs/41322_10h_Rev_Gd.pdf 4



1
0

,0
0

0
 x

5



Errata Statistics

4 years; 136 errata; 3 bugs/month

SPECS: A Lightweight Runtime Mechanism for Protecting Software 

from Security-Critical Processor Bugs; Hicks et al; ASPLOS’15
https://github.com/impedimentToProgress/specs

The Core-i7 processor with integrated graphics card
 in 2012 with 1,400M Transistors

A 4-fold increase in bugs in Intel processor designs 
per generation. Approximately 8000 bugs 
designed into the Pentium 4 (‘Willamette’)

from https://www.cl.cam.ac.uk/~jrh13/slides/nijmegen-
21jun02/slides.pdf

6



Outline

• Hardware Bug Examples
• How do they look like? The discovery process? Impact?

• #1: The famous Pentium FDIV bug

• #2: SYSRET 64-bit OS privilege escalation vulnerability on Intel CPU

• #3: Branch history injection attack

• How to discover hardware bugs?
• Manual efforts, testing

• Fuzzing

• Formal verification (next lecture)

7



Bug #1: Pentium FDIV Bug

• What is the specification for floating-point computation?
• Floating is encoded as 1 +  𝑓 × 2𝑒  , 0 ≤ 𝑓 < 1, 𝑒 ∈ 𝑍

• Example: 1/10 =  1.9999 … 9𝑎 ×  2−4 (in hexadecimal)

• We always have errors when doing floating-point computation, because we 
have limited number of bits for each floating number

• The specification allows error to occur after bit 𝑥

The computational aspects of the Pentium affairs. Coe et al. IEEE 1995 https://people.cs.vt.edu/~naren/Courses/CS3414/assignments/pentium.pdf

The Pentium FDIV 
bug: see errors much 

earlier than the 
expected 𝑥 bits

8



The Discovery Process #1: Nicely’s Prime

• Thomas Nicely, a mathematics professor, tried to compute reciprocal 
of prime numbers:  𝑝 =  824, 633, 702, 441

• The correct result: 
1/𝑝 =  1.212659629408667 ×  10−12

• But the new Pentium processor gives: 
1/𝑝 =  1.212659624891158 × 10−12

• Took him four months to confirm the problem was NOT in 
his program -> math libraries -> compilers -> operating system, 
but in the hardware

Any other 
numbers …?

Differ after 
the 9th digit

9



The Discovery Process #2: Kaiser’s List 

• Andreas Kaiser, a computer consultant
• Generate 25 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 random integers and checked the accuracy of the 

computed reciprocals. 23 are incorrect.

Patterns?

• Many are started with 1.7𝑓𝑓𝑓𝑓 
• In another word, the first 20 bits after the 

leading bit have to be a single zero, 
followed by at least 19 ones

Pentium computed the reciprocals of these numbers inaccurately 10



The Discovery Process #3: Coe’s Ratio 

• Tim Coe, electrical engineer, has designed floating-point chips

•
4,195,835

3,145,727
= 1.33382044 … (correct)   1.33373906… (Pentium) 

The erorrs involve 𝑦/𝑥 where 𝑥 and 𝑦’s bit 
patterns conspire to excite the bug at an 
early stage in the division.

Differ after 
the 4th digit

11



Bug Explanation: FDIV

• Shift-and-subtract

Sweeney, Robertson, and Tocher

• Old processors: choose quotient from 0, 1

• Faster Sweeney, Robertson, and Tocher (SRT) 
algorithm Radix-4: 

• Choose quotient from 0, +1, − 1, +2, −2; 

• If the current quotient is incorrectly 
chosen, we can recover it from the next 
iteration

• Guess the quotient based on the first few 
digits  => use a 2D table to lookup

How to choose 
quotient as a 

human being?

A combination of trial and error, 
experience, pattern matching and luck.

12

https://en.wikipedia.org/wiki/Division_algorithm


Bug Explanation: SRT Table
first 5 bits of the divisor 

first 7 bits of 
the remainder 

• 2048 cells in total
• 1066 cells in use
• 5 cells are not initialized
• When the bug will be 

triggered?

13



How Frequently the bug can be triggered?

• Intel: an average spreadsheet user could encounter this flaw once in 
every 27,000 years, assuming 1,000 divisions per day.

• IBM: suspended sales of Pentium-based models and said it is as many 
as 20 mistakes per day.

• Who actually got affected?
• Normal users?

• Wall street? Financial pre-diction programs? Did the Pentium bug flip a 
trading decision from buy to hold to sell? 

• Difficult to calibrate

14



Consequences/Impacts

• Intel’s bad responses
• Conditional replacement (customers need to 

claim they do get influenced by the bug) → 
disastrous press

• No-questions-asked replacement → $475M cost 
in 1994, 10% replacements

• Potential long-term impact: 
• Random test is not be a good idea. Exhaustive 

test has scalability problem.

• A marked increase in the use of formal 
verification and number theory in hardware 
design

http://davefaq.com/Opinions/Stupid/Pentium.html#glitch

15

http://davefaq.com/Opinions/Stupid/Pentium.html


Bug #2: A SYSRET Bug

64-bit x86 instruction set: AMD64, Intel 64

A Stitch In Time Saves Nine: A Stitch In Time Saves Nine: A Case Of Multiple OS Vulnerability; Rafal Wojtczuk; BlackHat, 2012

Model Checking to Find Vulnerabilities in an Instruction Set Architecture; Bradfield et al; HOST’16

User
Space

Kernel
Space

SYSCALL

SYSCALL
• HW transits from user mode to kernel mode
• Save the userspace next-PC to the RCX register
• Jump to a kernel syscall entry point

SYSRET

SYSRET
• HW transits from kernel mode to user mode
• Restore the userspace next-PC from the RCX register

16



Two Different Specifications for SYSRET

Intel

SYSRET

Order is 
flipped

HW transits from kernel mode 
to user mode

HW transits from kernel mode 
to user mode

Restore the userspace next-PC 
from the RCX register

Restore the userspace next-PC 
from the RCX registerAMD

SYSRET

17



SYSRET Vulnerability

Intel

SYSRET

HW transits from kernel mode 
to user mode

HW transits from kernel mode 
to user mode

Restore the userspace next-PC 
from the RCX register

Restore the userspace next-PC 
from the RCX registerAMD

SYSRET

If RCX holds a non-canonical address, the SYSRET will generates a #GP (general protection fault)
Canonical means that given 48-bit virtual address space, the high 16 bits (bits 63-48) of a virtual 
address have same value as bit 47.

#GP in user 
mode

#GP in kernel 
mode

18



How SYSRET is used in kernel code?

• What do we do before we transition from kernelspace to userspace?

movq RCX(%rsp), %rcx
movq RIP(%rsp), %r11
cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ 
jne swapgs_restore_regs_and_return_to_usermode

…
/* populate all the registers using data from userstack */
sysret

https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/entry_64.S

At this point, 
all the registers are 

user-controlled 
(attacker-controlled)

19

https://elixir.bootlin.com/linux/v5.9.9/C/ident/movq
https://elixir.bootlin.com/linux/v5.9.9/C/ident/RCX
https://elixir.bootlin.com/linux/v5.9.9/C/ident/rsp
https://elixir.bootlin.com/linux/v5.9.9/C/ident/rcx
https://elixir.bootlin.com/linux/v5.9.9/C/ident/movq
https://elixir.bootlin.com/linux/v5.9.9/C/ident/RIP
https://elixir.bootlin.com/linux/v5.9.9/C/ident/rsp
https://elixir.bootlin.com/linux/v5.9.9/C/ident/r11
https://elixir.bootlin.com/linux/v5.9.9/C/ident/rcx
https://elixir.bootlin.com/linux/v5.9.9/C/ident/r11
https://elixir.bootlin.com/linux/v5.9.9/C/ident/jne


SYSRET Attack on Intel Processors

usermode 
stack

rip

rsp

…
rcx

Registers

Before executing SYSRET, all registers have 
been restored using usermode context

RCX holds 
a non-canonical 
address

Need to handle #GP 
in kernel mode

usermode 
stack

rip

rsp

…
rcx

Registers

#GP handler

IDT
#GP handler stack

Ring0 Ring0

Assume rip points to kernel stack and start 
using it --> can overwrite kernel data

#GP handler

IDT
#GP handler stack

20



Longtime Intel x86 OS Bug

21



Exploiting Sysret on Linux in 2023

The sysret 
vulnerability

https://www.willsroot.io/2023/08/sysruption.html

allows an attacker to write 
data into kernel addresses 

(using the values prepared in 
the registers in user space)

Write the 
addresses of 
ROP gadgets

Kernel ROP 
attack!

A missing piece: need 
to bypass ASLR…

Side channel attacks 
(EntryBleed)

22



It’s not a bug, it’s a feature

23



It’s not a bug, it’s a feature

https://www.kb.cert.org/vuls/id/649219

24

https://www.kb.cert.org/vuls/id/649219


Who to blame?

• Intel claims it is not an errata

• Errata are design defects or errors that may cause ... behavior to 
deviate from published specifications.

• This behavior is consistent with Intel’s specification

• So the problem is the specification is incorrect

• Intel SDM (software development manual) 3400 pages. We cannot 
assume the specification is always correct.

• Research question: how can we know the ISA specification is correct?
• Some research efforts to verify ISA specification

25



The Sail ISA specification language

https://github.com/rems-project/sail 26



Bug #3: eIBRS Vulnerability

• Recap Spectre v2
• eIBRS: Enhanced Indirect Branch Restricted 

Speculation. Advertised as a mitigation against 
Spectre v2.

Barberis et al. Branch History Injection: On the Effectiveness of Hardware Mitigations Against 

Cross-Privilege Spectre-v2 Attacks. USENIX’22 https://www.vusec.net/projects/bhi-spectre-bhb/

Specification: 
Do not let lower-privileged code to interfere the branch 
prediction target of the high-privilege code. 
OR
Isolate BTB entries across privilege levels.

valid target

ValidEntry PC
predicted

target PC

match

=

Train_source Train_target1

Branch Target Buffer (BTB)

ID

K/U

What does this mean?
Non-interference?

A vague specification.

27



Recap the Problem: Branch History Injection

PC

valid target

ValidEntry PC
predicted

target PC

match

=

Train_source Train_target1

Branch Target Buffer (BTB)

ID

K/U

k

Branch
Source

BHB (branch 
history buffer)

hash

• #1: Userspace code can 
trigger different system calls

 

• #2: Userspace prediction 
history can affect kernel 
space BTB prediction

28



Summary

Implementation does not 
match specification

(Errata)
Bugs in the specification Vague specification

• Next: How to find hardware bugs?
• Get ideas from the software

29



Software Bugs Hunting/Fixing

• Approach 1: Manual effort
• Hire a lot of experts and stare at the code

• Regression test → but need to be updated

• Approach 2: How about randomly generating test cases?
• Fuzzing

• Approach 3: Formal verification

30



Fuzzing

31



Fuzzing In A Nutshell

• Automatic generate test examples

• 1999, Alan Cox at University of Wales discovered a vulnerability in Linux kernel by 
simply running a proram generating random input and feed into the kernel

• Crash is generated by assertions/specifications

• Simple yet effective

• Industry standard for software

From Riding the Fuzzing Hype Train (RAID'21 Keynote)
32



Fuzzing Components

• Random seeds
• Sometimes need formatted inputs, e.g., 

PDF reader

• A criteria to check whether the 
outcome is as expected or not. 

• Specification

• Security invariant (paper discussion 
SPECS)

• Assertions (address sanitizer)

• Heuristics for generating new tests => 
feedback loop for better efficiency

33



Types of Fuzzing

• Blackbox

• Greybox

• Whitebox

From Blackbox Fuzzing to Whitebox Fuzzing towards Verification; Patrice Godefroid; Microsoft Research
34



Example: Hidden Instructions
• There exist holes in instruction encoding:

• Hidden instructions: secret instructions that give backdoor or powerful 
access to processor internals

• Secret processor functionality: Appendix H

• An example:
• Pentium F00F bug, an invalid instruction freezes the cpu, discovered in 1997
• A Ring 3 process can DOS (denial of service) a process
• The invalid instruction encoding is: F0 0F C7 [C8-CF]

Breaking the x86 ISA, Christopher Domas; Blackhat’17

https://www.youtube.com/watch?v=KrksBdWcZgQ 35

The RISC-V Instruction Set Manual Volume I: 
Unprivileged ISA



Search for Hidden Instructions

Instructions:

0F 6A 60 6A 79 6D C6 02 …

ISA specification:

Valid instructions (in spec)

Invalid instructions
(#UD exception, invalid opcode)

Hidden instructions (not in spec, 
but can execute, no #UD exception)

36

How to capture 
this case?



More Hardware Fuzzing Examples

• Zenbleed: found a CPU bug via post-silicon fuzzing

https://lock.cmpxchg8b.com/zenbleed.html 37



Summary

• Hardware bugs
• Deviate from specification (errata)

• Incorrect and vague specification

• Potential approaches to find hardware bugs
• Manual analysis, testing

• Fuzzing

• Formal Verification (next lecture)

Program testing can be quite effective for showing the presence of 

bugs, but is hopelessly inadequate for showing their absence.      

           ‒ Edsger Dijkstra
38


	Default Section
	Slide 1: Hardware Bugs and Fuzzing
	Slide 2: What is Errata?
	Slide 3: Errata Table Example
	Slide 4: More Errata
	Slide 5
	Slide 6: Errata Statistics
	Slide 7: Outline

	Bug #1: FDIV
	Slide 8: Bug #1: Pentium FDIV Bug
	Slide 9: The Discovery Process #1: Nicely’s Prime
	Slide 10: The Discovery Process #2: Kaiser’s List 
	Slide 11: The Discovery Process #3: Coe’s Ratio 
	Slide 12: Bug Explanation: FDIV
	Slide 13: Bug Explanation: SRT Table
	Slide 14: How Frequently the bug can be triggered?
	Slide 15: Consequences/Impacts

	Bug #2: Sysret
	Slide 16: Bug #2: A SYSRET Bug
	Slide 17: Two Different Specifications for SYSRET
	Slide 18: SYSRET Vulnerability
	Slide 19: How SYSRET is used in kernel code?
	Slide 20: SYSRET Attack on Intel Processors
	Slide 21: Longtime Intel x86 OS Bug
	Slide 22: Exploiting Sysret on Linux in 2023
	Slide 23: It’s not a bug, it’s a feature
	Slide 24: It’s not a bug, it’s a feature
	Slide 25: Who to blame?
	Slide 26: The Sail ISA specification language

	Bug #3: BHB Injection
	Slide 27: Bug #3: eIBRS Vulnerability
	Slide 28: Recap the Problem: Branch History Injection
	Slide 29: Summary
	Slide 30: Software Bugs Hunting/Fixing

	Fuzzing
	Slide 31: Fuzzing
	Slide 32: Fuzzing In A Nutshell
	Slide 33: Fuzzing Components
	Slide 34: Types of Fuzzing
	Slide 35: Example: Hidden Instructions
	Slide 36: Search for Hidden Instructions
	Slide 37: More Hardware Fuzzing Examples

	Summary
	Slide 38: Summary


