Hardware Bugs and Fuzzing

Mengjia Yan
Spring 2025
sysret slides credit: Will Liu (MIT)

Ui Ty =2

I What is Errata?
intel)

8 and 9" Generation Intel®
Core™ Processor Family

Specification Update
Supporting 8" Generation Intel® Core™ Processor Families for
S/H/U Platforms, formerly known as Coffee Lake

Supporting 9" Generation Intel® Core™ Processor Families
Processors for S/H Platforms, formerly known as Coffee Lake
Refresh

November 2019

Revision 002

It is a compilation of device and document errata and
specification clarifications and changes, which is intended for
hardware system manufacturers and for software developers
of applications, operating system, and tools.

Errata are design defects or errors. Errata may cause the
processor’s behavior to deviate from published specifications.
Hardware and software designed to be used with any given
stepping must assume that all errata documented for that
stepping are present on all devices.

https://lwww.intel.com/content/www/us/en/products/docs/processors/core/8th-gen-core-spec-update.htmi

Errata Table Example

3.2

Errata Summary Information

Table 4-3. Errata Summary Table

ID

00:

00:

00:

00:

Processor Line / Stepping

S

H v Title

Reported Memory Type May Not Be Used to Access the VMCS and

001 Referenced Data Structures
Bits 53:50 of the IA32_VMX_BASIC MSR report the memory type that the processor
uses to access the VMCS and data structures referenced by pointers in the VMCS.
Problem Due to this erratum, a VMX access to the VMCS or referenced data structures will

instead use the memory type that the memory-type range registers (MTRRs) specify
for the physical address of the access.

Implication

Bits 53:50 of the IA32_VMX_BASIC MSR report that the write-back (WB) memory
type will be used, but the processor may use a different memory type.

Workaround

Software should ensure that the VMCS and referenced data structures are located at
physical addresses that are mapped to WB memory type by the MTRRs.

Status

For the steppings affected, refer the Summary Table of Changes.

IVI o re E rrata Occasionally, AMD identifies product errata that cause the processor to

deviate from published specifications. Descriptions of identified product
errata are designed to assist system and software designers in using the
processors described in this revision guide. This revision guide may be

AMDZ\ updated periodically.

298 L2 Eviction May Occur During Processor Operation To Set

Accessed or Dirty Bit
Revision Guide for ——
AMD Famlly 10h The processor operation to change the accessed or dirty bits of a page translation table entry in the L2
Processors from Ob to 1b may not be atomic. A small window of time exists where other cached operations may

cause the stale page translation table entry to be installed in the L3 before the modified copy is
returned to the L2,

In addition, if a probe for this cache line occurs during this window of time, the processor may not set
the accessed or dirty bit and may corrupt data for an unrelated cached operation.

Potential Effect on System
One or more of the following events may occur:

* Machine check for an L3 protocol error. The MC4 status register (MSR0000 0410) is
B2000000_000BOCOFh or BA000D00O 000BOCOFh. The MC4 address register

Pusbcaton® 41322 Revakn 392 (MSRO000 0412) is 26h.
e e ' * Loss of coherency on a cache line containing a page translation table entry.
Advensad Sers Deviane st * Data corruption,
Suggested Workaround

https://www.amd.com/system/files/TechDocs/41322 _10h | BIOS should set MSRC001_0015[3] (HWCR[TIbCacheDis]) to 1b and MSRC001_1023[1] to I1b. 4

Tr a mnnlenennacens nlatfnrm the wwnarirarsnsmmd ahave chanld ha annliad ta all annrcaconre ranvavrdlace AF

10,000 x

ibes the empir egularity { nber of transistors on integr

Sl

por nate

r 1S advancement IS important ror other aspects of technological progr COMPUUng SUcih as pro € price of Co

Transustor count
50,000.000,00C °
0 <

10.000,000,000

5.000.000.00(

° ® °
AN A ovV.e
100,000,000 o
50.000.000
o @ °e <
8o .
10.000.000 o
5.000.000 8o
°
® o
1,000,000 > ¢
500.000 o Q
° 0’
° <
f °
° A
°
oo ° o <
® °
° .Y
< "0
<
0)
O le D NS .:_ﬂ o A0 A0 :\\-_ .)- - aC) :‘:v - ” o _\j:_. O \\.' ’\- n O &
: s - Year in which the microchip was first introduced
L i1t [|

s l,d\\ The numbcn ol ll msnslons on mlLlOthl)S (loul)lcs every l\\o vears

iputers.

Our World
in Data

Errata Statistics

-

hared L3 Cache

“Heed s &4 agel -

MOty GONtrollerd/0

| CESESSSSESSESSSSSSSRSEST Y . it

The Core-i7 processor with integrated graphics card
in 2012 with 1,400M Transistors

4 years; 136 errata; 3 bugs/month

SPECS: A Lightweight Runtime Mechanism for Protecting Software
from Security-Critical Processor Bugs; Hicks et al; ASPLOS’ 15
https://github.com/impedimentToProgress/specs

A 4-fold increase in bugs in Intel processor designs
per generation. Approximately 8000 bugs
designed into the Pentium 4 (‘Willamette’)

from https://www.cl.cam.ac.uk/~jrh13/slides/nijmegen-
21jun02/slides.pdf

I Outline

 Hardware Bug Examples
 How do they look like? The discovery process? Impact?
e #1: The famous Pentium FDIV bug
e #2: SYSRET 64-bit OS privilege escalation vulnerability on Intel CPU
e #3: Branch history injection attack

* How to discover hardware bugs?
* Manual efforts, testing
* Fuzzing
* Formal verification (next lecture)

Bug #1: Pentium FDIV Bug

* What is the specification for floating-point computation?
* Floatingisencodedas (1 + f) X 2¢,0<f<1l,e€eZ
e Example: 1/10 = 1.9999...9a x 2~* (in hexadecimal)

* We always have errors when doing floating-point computation, because we
have limited number of bits for each floating number

* The specification allows error to occur after bit x

Single Double Extended ..‘ The Pentium FDIV
precision precision precision bug: see errors much
earlier than the
gzri’:iie . ;i ?; :{3} expected x bits
Bits for e 8 11 15

Relative accuracy 2°23=1.2-107 252=22.107¢ 2:_53 =1.1.107"
Approximate range otz _qotss phozs o qgfsos pFiesss . qqTaves

The computational aspects of the Pentium affairs. Coe et al. IEEE 1995 https://people.cs.vt.edu/~naren/Courses/CS3414/assignments/pentium.pdf 8

The Discovery Process #1: Nicely’s Prime

 Thomas Nicely, a mathematics professor, tried to compute reciprocal
of prime numbers: p = 824,633,702,441

* The correct result: Difer after
1/p = 1.212659629408667 X 1012 the Sth digit

* But the new Pentium processor gives:
1/p = 1.212659624891158 x 10712

* Took him four months to confirm the problem was NOT in

his program -> math libraries -> compilers -> operating system,
but in the hardware

o
® ©

Any other
— humbers ...?

The Discovery Process #2: Kaiser’s List

* Andreas Kaiser, a computer consultant

* Generate 25 billion random integers and checked the accuracy of the
computed reciprocals. 23 are incorrect.

3221224323
12884897291
206158356633
824633702441
1443107810341
6597069619549
9895574626641
13194134824767
26388269649885
52776539295213

1

“
i
-~

[

T7££££70600000 -
TEE££70580000
T7E£££704¢8000 -
TEEEE££7052000 -
4fffedac25000 -
LTEEEE££7057400
JA1fffcébc2a200 -
TEE££704e7e00 -
T££££704£3400 -
TEEE££7046£680 -

251
213

Patterns?

* Many are started with 1.7ffff
* |n another word, the first 20 bits after the

leading bit have to be a single zero,
followed by at least 19 ones

Pentium computed the reciprocals of these numbers inaccurately 10

I The Discovery Process #3: Coe’s Ratio

* Tim Coe, electrical engineer, has designed floating-point chips

4,195,835 .
. = 1.33382044 ... (correct) 1.33373906... (Pentium)
3,145,727
Differ after
& the 4th digit
3 1.333830 =
® 1.333820
5 1333810
£ 1.333800
E 1.333790
£ 1.333780 : ’ :
2 aserro. The erorrs involve y/x where x and y’s bit
S | 233760] patterns conspire to excite the bug at an
5 sy eeemeeeeeeemeee® early stage in the division.
2 0f o° O ¥ o b€ P o GV o o o & o o
- \q@?;b \%@?;b \%@%;b \(gﬁ;b \(5%?;5 \Q’%%gb \Q’%%;b \q@?;b \Qb?;b \%@?;b \%@%?’ \(5%%;5 \Q’%%gb \Cb(ocg;b \q@?;b
D D D D e D B D - e D Des D Des Des

Numerator

11

Bug Explanation: FDIV

e Shift-and-subtract

1.333?

3145727 ‘ 4195835
3145727

10501080
9437181

10638990
9437181

12018090
9437181

25809090

PRAVAPI?D

........

* Old processors: choose quotient from 0, 1
How to choose

guotient as a

ing?
human being: e Faster Sweeney, Robertson, and Tocher (SRT)

algorithm Radix-4:
* Choose quotient from 0,+1,— 1,42, —2;

* |f the current quotient is incorrectly
chosen, we can recover it from the next
iteration

* Guess the quotient based on the first few
digits => use a 2D table to lookup

A combination of trial and error,
experience, pattern matching and luck.

12

https://en.wikipedia.org/wiki/Division_algorithm

I Bug Explanation: SRT Table

first 7 bits of
the remainder

A\

0101010

QL0100

0100, LO0

5 0100.011

0L00.0L10

5 0100.001

0100, 000

75 0oLl.L11

GLl. 101

00L11. 100

{ first 5 bits of the divisor

DDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDD
Q 1 Q 1 o 1 2 1 9 1 o 1 @ 1 Q L

/-

2048 cells in total
1066 cells in use

5 cells are not initialized -

When the bug will be
triggered?

(((((((

How Frequently the bug can be triggered?

* Intel: an average spreadsheet user could encounter this flaw once in
every 27,000 years, assuming 1,000 divisions per day.

* IBM: suspended sales of Pentium-based models and said it is as many
as 20 mistakes per day.

 Who actually got affected?

* Normal users?

* Wall street? Financial pre-diction programs? Did the Pentium bug flip a
trading decision from buy to hold to sell?

e Difficult to calibrate

14

I Consequences/Impacts

* Intel’s bad responses s B oy
 Conditional replacement (customers need to T e e
Claim they dO get inﬂuenced by the bug) 9 Q: What do you get when you cross a Pentium PC with a research grant?
disastrous press A: A mad scientist.
° No_questions_asked replacement 9 S475M COSt Do you think it bothers x86 users that the 486 is a functional upgrade to the Pentium?

inl 994’ 10% rep | acements In response to the Pentium bug_. Power:Mac officials have announced t.hat they will be
adding the control panel "Pentium Switcher"” that allows users to decide whether the
PowerMac should emulate pre-Pentium or post-Pentium FDIV behaviour.

TOPTEN NEW INTEL SLOGANS FOR THE PENTIUM

* Potential long-term impact:

* Random test is not be a good idea. Exhaustive ~ 33000723) s & FLAW Daturet, not & Bus

test has scalability problem. 7.9999414610 Nearly 300 Correct Opcodes
. . 6.9999831538 You Don't Need to Know What's Inside
* A marked increase in the use of formal 59999835137 Redefining the PC--and Mathematics As Well
. - . . 4.9999999021 We Fixed It, Really
verification and number theory in hardware 39998245917 Division Considered Harmful
d esi n 29991523619 Why Do You Think They Call It *Floating® Point?
g 1.9999103517 We're Looking for a Few Good Flaws

0.9999999998 The Errata Inside

http://davefaq.com/Opinions/Stupid/Pentium.html#glitch
15

http://davefaq.com/Opinions/Stupid/Pentium.html

I Bug #2: A SYSRET Bug

SYSCALL
* HW transits from user mode to kernel mode
64-bit x86 instruction set: AMDG64, Intel 64 * Save the userspace next-PC to the RCX register
e Jump to a kernel syscall entry point
SYSCALL
User Kernel
Space Space
SYSRET

SYSRET
* HW transits from kernel mode to user mode
* Restore the userspace next-PC from the RCX register

A Stitch In Time Saves Nine: A Stitch In Time Saves Nine: A Case Of Multiple OS Vulnerability; Rafal Wojtczuk; BlackHat, 2012
Model Checking to Find Vulnerabilities in an Instruction Set Architecture; Bradfield et al; HOST 16 16

I Two Different Specifications for SYSRET

AMD
SYSRET

HW transits from kernel mode
to user mode

Restore the userspace next-PC
from the RCX register

Restore the userspace next-PC
from the RCX register

HW transits from kernel mode
to user mode

Order is
flipped

Intel
SYSRET

17

SYSRET Vulnerability

HW transits from kernel mode
to user mode

AMD
SYSRET

Restore the userspace next-PC
from the RCX register

HGP in user
mode

estore the userspace next-PC
from the RCX register

HW transits from kernel mode
to user mode

HGP in kernel

mode

O

Intel
SYSRET

If RCX holds a non-canonical address, the SYSRET will generates a #GP (general protection fault)
Canonical means that given 48-bit virtual address space, the high 16 bits (bits 63-48) of a virtual

address have same value as bit 47.

18

How SYSRET is used in kernel code?

* What do we do before we transition from kernelspace to userspace?

movq RCX(%rsp), %rcx

movq RIP(%rsp), %rll

cmpq %rex, %rll /* SYSRET requires RCX == RIP */
jne swapgs_restore_regs_and_return_to_usermode

At this point, , _
P /* populate all the registers using data from userstack */

all the registers are
‘ sysret
user-controlled y

(attacker-controlled)

https://elixir.bootlin.com/linux/v5.9.9/C/ident/movq
https://elixir.bootlin.com/linux/v5.9.9/C/ident/RCX
https://elixir.bootlin.com/linux/v5.9.9/C/ident/rsp
https://elixir.bootlin.com/linux/v5.9.9/C/ident/rcx
https://elixir.bootlin.com/linux/v5.9.9/C/ident/movq
https://elixir.bootlin.com/linux/v5.9.9/C/ident/RIP
https://elixir.bootlin.com/linux/v5.9.9/C/ident/rsp
https://elixir.bootlin.com/linux/v5.9.9/C/ident/r11
https://elixir.bootlin.com/linux/v5.9.9/C/ident/rcx
https://elixir.bootlin.com/linux/v5.9.9/C/ident/r11
https://elixir.bootlin.com/linux/v5.9.9/C/ident/jne

SYSRET Attack on Intel Processors

Registers

usermode
stack

IDT

#GP handler stack

#GP handler

Before executing SYSRET, all registers have

N ——

Ring0

rsp

rcx
rip \

RCX holds

Need to handle #GP
in kernel mode

—)

a hon-canonical

address

been restored using usermode context

Registers

Ring0

usermode
stack

IDT

#GP handler stack

#GP handler

rsp

rcx

rip

Assume rip points to kernel stack and start
using it --> can overwrite kernel data

20

Longtime Intel x86 OS Bug

[PATCH] x86_64: Wh

Intel EM64T CPUs hanc
from AMD CPUs.

This version of the |

version fixed.

to Ernie Petrides

e
-

CVE-2012-0217 |Detail

MODIFIED

A T
201 2-07-05

CVE-2012-0217: Intel's sysret Kernel
on FreeBSD

Privi

by iZsh

Filed under vulnerability exploit FreeB5D

and Asit B. Mallick for analysis and initial

CVE-2014-4699;

analysis

by Vitaly Nikolenko

This vulnerability has been modified since it was last analyzed by the NVD. It is awaiting reai

changes to the information provided.

Description

Linux Kernel ptrace/sysret vulnerability

@® Posted on July 21, 2014 at 6:52PM

The x86-64 kernel system-call functionality H'{Xen 4.1.2 and earlier, as used in Citrix XenServe. ..o v ceies i weims prvees
Oracle Solaris 11 and earlier; illumos before r13724; Joyent SmartOS before 20120614 T184600Z; FreeBSD bofore 9.0-RELEASE-
p3; NetBSD 6.0 Beta and earlier; Microsoft Windows Server 2008 R2 and R2 SP1 and Windows 7 Gold and SP1; and possibly other
operating systems, when running on an Intel processor, incorrectly uses the sysret path in cases where a certain address is not a

Exploiting Sysret on Linux in 2023

Kernel ROP
attack!

|

The sysret MRS e
vulnerability) addresses of —)
ROP gadgets
allows an attacker to write A missing piece: need
data into kernel addresses to bypass ASLR...
(using the values prepared in
the registers in user space) I

Side channel attacks
(EntryBleed)

22

It’s not a bug, it’s a feature

Description

SYSRET is a compan
code at privilege leve
size, SYSRET remain
ters are loaded.

Operation

IF(CSL#1)or (IA32_EFER.LMA # 1) or (IA32_EFER.SCE # 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
IF (CPL +# 0) THEN #GP(0); FI;

IF (operand size is 64-bit)
THEN (* Return to 64-Bit Mode *)

OS system-call handler to user
ym R11J! With a 64-bit operand
ynly the low 32 bits of the regis-

IF (RCX is not canonical) THEN #GP(0);

RIP:= RCX;

ELSE (* Return to Compatibility Mode *)

RIP:= ECX;
Fl;
RFLAGS = (R11 & 3C7FD7H) | 2,

IF (operand size is 64-bit)

(* Clear RF, VM, reserved bits; set bit 1 *)

THEN C5.5elector = IA32_STAR[B63:48]+16;

ELSE CS.Selector := IA32_STAR[63:48];

El:

CS.Selector := C5.5elector OR 3;

(* RPL forced to 3 *)

["Setrestof (510 a fixed value ™)
CS5Base:=0;
CS.Limit ;= FFFFFH;
CSType:=11;
0s5:=1;
CSDPL:= 3;
CSP:=1;
IF (operand size is 64-bit)
THEN (* Return to 64-Bit Mode *)

(* Flat segment *)
(* With 4-KByte granularity, implies a 4-GByte limit *)
(* Execute/read code, accessed *)

23

It’s not a bug, it’s a feature

Intel claims that this vulnerability is a software implementation issue, as their
processors are functioning as per their documented specifications. However,
software that fails to take the Intel-specific SYSRET behavior into account may be

vulnerable.
https://www.kb.cert.org/vuls/id/649219

24

https://www.kb.cert.org/vuls/id/649219

Who to blame?

* Intel claims it is not an errata

* Errata are design defects or errors that may cause ... behavior to
deviate from published specifications.

* This behavior is consistent with Intel’s specification
e So the problem is the specification is incorrect

* Intel SDM (software development manual) 3400 pages. We cannot
assume the specification is always correct.

* Research question: how can we know the ISA specification is correct?
* Some research efforts to verify ISA specification

25

The Sail ISA specification language

Sail ISA models and tooling

Arm-A AT CHERIRISG-V CHERI-MIPS x86
ASL ASL Sail Sail ACL2

yasl_to_sail yasl_to_salil {
Arm-A o RISC-V MIPS x86
Sail Sail Sail Sail Sail
Sequential EW A//

e : ey : Documentation
Sequential . T = laTeX ! GHERI-RISC-V
Emulator (C) \ i fragments i CHERI-MIPS

. Sequential | / \ SRR . Prover Definitions

\Emulator (OCaml) |

S 1 isla SMT : e
ISA Tests symbolic evaluator Lem N :

Test / * * \ isabelle :

: Generation isla—axiomatic RMEM :

"""""""""""""""" concurrency concurrency ! HOL4

tool tool :

............................. * ISA Security Properties

foo ~
Islaris (Machine—checked proofs)
: Proof Tool ;

Proofs above Iris+Coq Concurrent Execution

suoniuyeq vsi

S10BJILY PaleIsusy)

26

I Bug #3: elBRS Vulnerability

* Recap Spectre v2 Branch Target Buffer (BTB)

* ¢elBRS: Enhanced Indirect Branch Restricted predicted
Speculation. Advertised as a mitigation against ID Entry PC Valid target PC
Spectre v2.

Specification: . . -

. . . ® [J Y

Do not let lower-privileged code to interfere the branch . . .

prediction target of the high-privilege code.

o e

Isolate BTB entries across privilege leve

What does this mean?
Non-interference?
A vague specification. v \
, match valid target
Barberis et al. Branch History Injection: On the Effectiveness of Hardware Mitigations Against
27

Cross-Privilege Spectre-v2 Attacks. USENIX’22 https./Anww.vusec.net/projects/bhi-spectre-bhb/

Recap the Problem: Branch History Injection

e #1: Userspace code can
trigger different system

e #2: Userspace prediction

history can affect kerne
space BTB prediction

Branch BHB (branch
Source history buffér) Branch Target Buffer (BTB)
predicted
ID Entry PC Valid target PC
hash
K . . .
® ® ®
[J [] ®
calls
| i target
match valid arge

28

Summary

(Implementation does not |
ia match specification . Bugs in the specification

M | (Errata) /

* Next: How to find hardware bugs?
 Get ideas from the software

Vague specification

29

Software Bugs Hunting/Fixing

e Approach 1: Manual effort
* Hire a lot of experts and stare at the code
* Regression test = but need to be updated

* Approach 2: How about randomly generating test cases?
* Fuzzing

e Approach 3: Formal verification

30

Fuzzing

Fuzzing In A Nutshell

» Automatic generate test examples

1999, Alan Cox at University of Wales discovered a vulnerability in Linux kernel by
simply running a proram generating random input and feed into the kernel

* Crash is generated by assertions/specifications

Input Run Program Crash

Simple yet effective

Industry standard for software

From Riding the Fuzzing Hype Train (RAID'21 Keynote)

32

Fuzzing Components

* Random seeds
* Sometimes need formatted inputs, e.g.,
PDF reader
A criteria to check whether the
outcome is as expected or not.
* Specification

» Security invariant (paper discussion
SPECS)

e Assertions (address sanitizer)

* Heuristics for generating new tests =>
feedback loop for better efficiency

33

Types of Fuzzing

e Blackbox

* Greybox

 Whitebox

Collected coverage:

From Blackbox Fuzzing to Whitebox Fuzzing towards Verification; Patrice Godefroid; Microsoft Research
34

Example: Hidden Instructions

* There exist holes in instruction encoding:

31 25 24 20 19 15 14 12 11 7 6 0
funct?7 rs2 rsi funct3 rd opcode
7 5 5 3 5 7
O 0 0O 0 0O OO src2 src’ ADD/SLT[U] gest OP
O 0 0O 0O 0O OO src2 src’ AND/OR/XOR est OP . .
000 00O O orc2 orcl SLL/SRL dest oP The RISC-V Instruction Set Manual Volume I:
0O 1 0 0O 0 0 O src2 src’l SUB/SRA dest OP Unprivi/eged ISA

* Hidden instructions: secret instructions that give backdoor or powerful
access to processor internals

 Secret processor functionality: Appendix H

* An example:

* Pentium FOOF bug, an invalid instruction freezes the cpu, discovered in 1997
* A Ring 3 process can DOS (denial of service) a process
* The invalid instruction encoding is: FO OF C7 [C8-CF]

Breaking the x86 ISA, Christopher Domas; Blackhat’'17
https://www.youtube.com/watch?v=KrksBdWcZgQ 35

Instructions:

=

OF 6A 60 6A 79 6D C6 02 ..

1

=

ISA specification:

I Search for Hidden Instructions

Valid instructions (in spec)

Invalid instructions
(#UD exception, invalid opcode)

Hidden instructions (not in spec,
but can execute, nG3tUD exception)

O

31 2524 2019 1514 1211 7 6 0
funct? rs2 rsi funct3 rd opcode

31 2019 1514 1211 7 6 0
imm[11:0] rsf funct3 rd opcode

31 25 24 2019 1514 12 11 7 6 0
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

31 12 11 7 6 0
imm[31:12] rd opcode

R-Type

How to capture
Type this case?
S-Type
U-Type 36

I More Hardware Fuzzing Examples

e Zenbleed: found a CPU bug via post-silicon fuzzing

movnti [rbp+0x0],ebx movnti [rbp+0x0],ebx
sfence
rcr dh,1 rcr dh,1
1fence
sub r10, rax sub r10, rax
mfence
rol rbx, cl rol rbx, cl
nop
xor edi, [rbp-0x57] xor edi, [rbp-0x57]

A randomly generated sequence of instructions, and the same sequence but with randomized alignment,
serialization and speculation fences added.

https://lock.cmpxchg8b.com/zenbleed.html

37

I Summary =

* Hardware bugs

» Deviate from specification (errata)
* Incorrect and vague specification

* Potential approaches to find hardware bugs
 Manual analysis, testing
* Fuzzing
* Formal Verification (next lecture)

Program testing can be quite effective for showing the presence of
bugs, but is hopelessly inadequate for showing their absence.
— Edsger Dijkstra

38

	Default Section
	Slide 1: Hardware Bugs and Fuzzing
	Slide 2: What is Errata?
	Slide 3: Errata Table Example
	Slide 4: More Errata
	Slide 5
	Slide 6: Errata Statistics
	Slide 7: Outline

	Bug #1: FDIV
	Slide 8: Bug #1: Pentium FDIV Bug
	Slide 9: The Discovery Process #1: Nicely’s Prime
	Slide 10: The Discovery Process #2: Kaiser’s List
	Slide 11: The Discovery Process #3: Coe’s Ratio
	Slide 12: Bug Explanation: FDIV
	Slide 13: Bug Explanation: SRT Table
	Slide 14: How Frequently the bug can be triggered?
	Slide 15: Consequences/Impacts

	Bug #2: Sysret
	Slide 16: Bug #2: A SYSRET Bug
	Slide 17: Two Different Specifications for SYSRET
	Slide 18: SYSRET Vulnerability
	Slide 19: How SYSRET is used in kernel code?
	Slide 20: SYSRET Attack on Intel Processors
	Slide 21: Longtime Intel x86 OS Bug
	Slide 22: Exploiting Sysret on Linux in 2023
	Slide 23: It’s not a bug, it’s a feature
	Slide 24: It’s not a bug, it’s a feature
	Slide 25: Who to blame?
	Slide 26: The Sail ISA specification language

	Bug #3: BHB Injection
	Slide 27: Bug #3: eIBRS Vulnerability
	Slide 28: Recap the Problem: Branch History Injection
	Slide 29: Summary
	Slide 30: Software Bugs Hunting/Fixing

	Fuzzing
	Slide 31: Fuzzing
	Slide 32: Fuzzing In A Nutshell
	Slide 33: Fuzzing Components
	Slide 34: Types of Fuzzing
	Slide 35: Example: Hidden Instructions
	Slide 36: Search for Hidden Instructions
	Slide 37: More Hardware Fuzzing Examples

	Summary
	Slide 38: Summary

