
Formal Verification
for Hardware Security

Mengjia Yan

Spring 2025

Slides credit: Sharad Malik (Princeton)

Recall Hardware Bugs

Implementation does not
match specification

(Errata)
Bugs in the specification Vague specification

https://twitter.com/gf_256/status/1321677851633029120/

Program/Design Testing

• In principle: Exhaustive testing can prove correctness
• In practice: Test cases are generated to cover some (not all)

inputs/statements/branches/paths etc.

A testing

strategy

Probably right

or

Certainly wrong

Program testing can be quite effective for showing the presence of

bugs, but is hopelessly inadequate for showing their absence.

 ‒ Edsger Dijkstra

Program/Design Verification

program

verifier
Right or Wrong

?

The goal: (under some conditions), program verifier

• can provide a proof (if program is right)

• or provide a counterexample (if program is wrong)

Formal Verification

“Verification”: formally prove that the program/design is correct

• Rigor: uses well established mathematical foundations

• Exhaustiveness: considers all possible program behaviors

• Automation: uses computers to verify programs!

Design costs at recent nodes.
Source: Handel Jones, IBS

In many contexts, the
term verification can

be used in a loose way.

http://www.ibs-inc.net/

Overall, it is a search problem…

Applications

Solvers

Methods

Program verification,
program synthesis,
test generation, etc.

SAT, SMT, BDDs,
proof systems, etc.

Symbolic execution,
model checking,
invariant generation, etc.

(! (= a (* 2 (+ 10 b)))))

How does formal verification work?

Some SystemVerilog Code
+

Assertion check for
specification violation

Symbolic Execution: A Simple Example #1

int hash(int z){
 return (z+10)*2;
}

int obscure(int x, int y)
{
 if (x==hash(y))
 assert(false);
 return 1;
}

(define (hash z)
 (* (+ z 10) 2)
)

(define (obscure x y)
 (if (= x (hash y))
 (assert #t)
 (- x y))
)

C code: Rosette code:

How will fuzzing
behave to find

this error?

A Simple Example #2

• Build execution tree with all the
execution paths

• Each execution path has logical
formula to describe path conditions

• The common pitfall: extremely large
formula -> memory overhead and
scalability issue

int hash2(int z){
 if (z>10)
 z = z-10;
 return z;
}

int obscure(int x, int y)
{
 if (x==hash2(y))
 error();
 return x-y;
}

How does formal verification work?

Applications

Solvers

Methods

Program verification,
program synthesis,
test generation, etc.

SAT, SMT, BDDs,
proof systems, etc.

Symbolic execution,
model checking,
invariant generation, etc.

int hash2(int z){
if (z>10)

z = z-10;
return z;

}

int obscure(int x, int y)
{

if (x==hash2(y))
error();

return x-y;
}

(! (= a (* 2 (+ 10 b)))))

Success with SAT is at the heart of
formal reasoning about systems.

=> Linux kernel, crypto
libraries, processor
Verilog code…

Big Advancements in the Past Decade

(1) SAT: is a Boolean formula f satisfiable?

(2) SMT (Satisfiability Modulo Theory): is a first-order logic formula
theory-satisfiable?

2004

DPLL(T)

2008

Z3

2009

SMT

1960

DP
10 var

1962

DLL
 10 var

1952

Quine
 10 var

1986

BDD
 100 Var

1988

SOCRATES
 3k Var

2001

Chaff
10k var

2003

MiniSAT
10k var

1996

GRASP
1k Var

1997

SATO
 1k Var

1996

Stålmarck
 1k Var

SAT in a Nutshell

 Given a propositional logic (Boolean) formula, find a variable assignment such that the formula

evaluates to 1, or prove that no such assignment exists.

 For n variables, there are 2n possible truth assignments to be checked.

 First established NP-Complete problem.

 S. A. Cook, The complexity of theorem proving procedures, Proceedings, Third Annual ACM Symp. on the

Theory of Computing,1971, 151-158

F = (a + b)(a’ + b’ + c)

a

b b

c c c c

0 1

0 0

00 001

1 1

1 1 1

Where are we today?

 Complexity of SAT: NP-complete

 But often tractable in practice

 Intractability of the problem no longer daunting

 Can regularly handle practical instances with millions of variables and constraints

 SAT has matured from theoretical interest to practical impact

 Electronic Design Automation (EDA)

◼ Widely used in many aspects of chip design

 Increasing use in software verification

◼ Commercial use at Microsoft, Amazon,…

Problem Representation

 Conjunctive Normal Form (CNF)

 Representation of choice for modern SAT solvers

 Every clause needs to be evaluated to TRUE

(a+b+c)(a’+b’+c)(a’+b+c’)(a+b’+c’)

Variables ClausesLiterals

SAT Solvers: A Condensed History

 Deductive

 Davis-Putnam 1960 [DP]

 Iterative existential quantification by “resolution”

 Backtrack Search

 Davis, Logemann and Loveland 1962 [DLL]

 Exhaustive search for satisfying assignment

 Conflict Driven Clause Learning [CDCL]

 GRASP: Integrate a constraint learning procedure, 1996

 Locality Based Search

 Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and others, 2001 onwards

 Added focus on efficient implementation

 “Pre-processing”

 Peephole optimization, e.g. miniSAT, 2005

We cover these two

algorithms to give

you a taste of how

the search works.

Basic DLL Search

a
0

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

 Decision

→

→

→

M. Davis, G. Logemann, and D. Loveland. A machine program for

theorem-proving. Communications of the ACM, 5:394–397, 1962

Basic DLL Search

a

0

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0  Decision

→

Basic DLL Search

a

0

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0  Decision

→

→

Basic DLL Search

a

0

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0

d=1

c=0

(a + c + d)
a=0

d=0
(a + c + d’)

Conflict!Implication Graph

→

→

d=1,d=0

Basic DLL Search

a

0

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0 1  Forced Decision

→

→

 Backtrack d=1,d=0

Think about the search performance:

- Do you always need to reach to the bottom to detect a conflict?

How fast a conflict is detected. Order matters.

Basic DLL Search

a

0

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0 1

c

0 1

1

1  Forced Decision
→

→

→

→

(a’ + b’ + c)

Basic DLL Search

a

0

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

b

0

c

0 1

c

0 1

1

1

b

1  Decision

a=1

b=1

c=1
(a’ + b’ + c)

Implication Graph

→

→

→

c=1

(a’ + b’ + c)

Basic DLL Search

a

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

b

0

c

0 1

c

0 1

1

1

b

1

a=1

b=1

c=1
(a’ + b’ + c) (b’ + c’ + d)

d=1

0

Implication Graph

→

c=1,d=1

Basic DLL Search

a

(a + c + d)

(a + c + d’)

(a + c’ + d)

(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)

(a’ + b + c’)

(a’ + b’ + c)

b

0

c

0 1

c

0 1

1

1

b

1

a=1

b=1

c=1
(a’ + b’ + c) (b’ + c’ + d)

d=1

 SAT

0

Implication Graph

→

c=1,d=1

Unit-clause rule with

backtrack search

Conflict Driven Learning and Non-chronological Backtracking

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

J. P. Marques-Silva and Karem A. Sakallah, “GRASP: A Search Algorithm for

Propositional Satisfiability”, IEEE Trans. Computers, C-48, 5:506-521, 1999.

Conflict Driven Learning and Non-chronological Backtracking

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

x1 x1=0

x1=0
Red text means evaluated to 0, and green means evaluated to 1

For the graph on the left:

Blue circles means free variable, and brown circles mean inferred variable.

Edge describes the inferred relationship.

Conflict Driven Learning and Non-chronological Backtracking

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

x1 x1=0, x4=1

x4=1

x1=0

Conflict Driven Learning and Non-chronological Backtracking

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

x1 x1=0, x4=1

x3 x3=1

x4=1

x3=1x1=0

Conflict Driven Learning and Non-chronological Backtracking

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

x1 x1=0, x4=1

x3 x3=1, x8=0

x4=1

x3=1

x8=0

x1=0

Conflict Driven Learning and Non-chronological Backtracking

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

x1 x1=0, x4=1

x3 x3=1, x8=0, x12=1

x4=1

x12=1

x3=1

x8=0

x1=0

Conflict Driven Learning and Non-chronological Backtracking

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0

x4=1

x12=1

x3=1

x8=0

x1=0

x2=0

Conflict Driven Learning and Non-chronological Backtracking

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x4=1

x12=1

x3=1

x8=0

x1=0

x2=0

x11=1

Conflict Driven Learning and Non-chronological Backtracking

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7 x7=1
x4=1

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1
Now getting

interesting..

What will be x9?

Conflict Driven Learning and Non-chronological Backtracking

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7 x7=1, x9= 0, 1
x4=1

x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

Conflict Driven Learning and Non-chronological Backtracking

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

x1

x3

x2

x7

Add conflict clause: x3’+x7’+x1

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9= 0, 1
x4=1

x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1
x3=1x7=1x1=0 → conflict

Conflict Driven Learning and Non-chronological Backtracking

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

x1

x3

x2

x7

Add conflict clause: x3’+x7’+x8

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9= 0, 1
x4=1

x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1
x3=1x7=1x8=0 → conflict

Backtrack to the decision level of x3=1

Conflict Driven Learning and Non-chronological Backtracking

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9= 0, 1
x4=1

x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

x3’+x7’+x8

Conflict Driven Learning and Non-chronological Backtracking

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

x3’ + x7’ + x8

x1

x3

x1=0, x4=1

x3=1, x8=0, x12=1,x7=0

Backtrack to the decision level of x3=1

Assign x7 = 0

x4=1

x12=1

x8=0

x1=0

←new clause

x7=0

x3=1

What’s the big deal?

Conflict clause: x1’+x3+x5’

Significantly prune the search space –

learned clause is useful forever!

Useful in generating future conflict clauses.

x1

x2

x3x3

x4 x4

x5x5x5 x5

Big Advancements in the Past Decade

(1) SAT: is a Boolean formula f satisfiable?

(2) SMT (Satisfiability Modulo Theory): is a first-order logic formula
theory-satisfiable?

2004

DPLL(T)

2008

Z3

2009

SMT

1960

DP
10 var

1962

DLL
 10 var

1952

Quine
 10 var

1986

BDD
 100 Var

1988

SOCRATES
 3k Var

2001

Chaff
10k var

2003

MiniSAT
10k var

1996

GRASP
1k Var

1997

SATO
 1k Var

1996

Stålmarck
 1k Var

Linear Arithmetic

(LIA)
Equality

(EUF)

Lists

(ADT)

The Basic SMT Problem

• Determining the satisfiability of a logical formula with regards to
some combination of background theories

 n > 3∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Background Theories
x = y ⇒ f(x) = f(y)

2x+y = 0 ∧ 2x−y = 4 ⇒ x = 1

x+1 ≠ NaN ∧ x < ∞ ⇒ x+1 > x

4·(x ≫ 2) = x & ∼3

x = y ·z ∧ z ∈ ab∗ ⇒ |x| > |y|

i = j ⇒ store(a, i, x) [j] = x

x ≠ Leaf ⇒ ∃l, r : Tree(α). ∃a : α. x = Node (l, a, r)

e1 ∈ x ∧ e2 ∈ x \ e1 ⇒
 ∃y, z : Set(α). |y| = |z| ∧ x = y ∪ z ∧ y ≠ ∅

(x, y) ∈ r ∧ (y, z) ∈ r ⇒ (x,z) ∈ r

Uninterpreted Funs

Integer/Real Arithmetic

Floating Point Arithmetic

Bit-vectors

Strings and RegExs

Arrays

Algebraic Data Types

Finite Sets

Finite Relations

...

CDCL(T): Key Idea

• SAT solver handles Boolean structure of the formula
• Treat each atomic formula as a propositional variable

• Resulting formula is called a Boolean abstraction (B)

• Example

F: (x=z) ˄ ((y=z ˄ x = z+1) ˅ ¬ (x=z))

B(F): b1 ˄ ((b2 ˄ b3) ˅ ¬b1)

Boolean abstraction (B) is defined inductively over formulas

B is a bijective function, B-1 also exists

B-1 (b1 ˄ b2 ˄ b3): (x=z) ˄ (y=z) ˄ (x=z+1)

B-1 (b1 ˅ b2’): (x=z) ˅ ¬(y=z)

b1 b2 b3 b1

CDCL(T): Key Idea

• Use SAT solver to decide satisfiability of B(F)
• If B(F) is Unsat, then F is Unsat

• If B(F) has a satisfying assignment A, F may still be Unsat

• Example: b1, b2, b3 are not independent propositions!
 SAT solver finds a satisfying assignment A: b1 ˄ b2 ˄ b3

 But, B-1(A) is unsatisfiable modulo theory
 (x=z) ˄ (y=z) ˄ (x=z+1) is not satisfiable

F: (x=z) ˄ ((y=z ˄ x = z+1) ˅ ¬ (x=z))

B(F): b1 ˄ ((b2 ˄ b3) ˅ ¬b1)

b1 b2 b3 b1
F

B(F)

B(F) is an over-approximation of F

CDCL(T): Simple Version

1. Generate a Boolean abstraction B(F)

2. Use SAT solver to decide satisfiability of B(F)
• If B(F) is Unsat, then F is Unsat

• Otherwise, find a satisfying assignment A

3. Use theory solver to check if B-1(A) is satisfiable modulo T
• If B-1(A) is satisfiable modulo theory T, then F is satisfiable

• Otherwise, B-1(A) is unsatisfiable modulo T

 Add ¬A to B(F), and backtrack in SAT

Repeat (2, 3) until there are no more satisfying assignments

Interacting with SAT/SMT Solvers

Interact
with

a solver
A proof is generated. Your program is bug-free!

A counterexample is generated.
You can use it to fix your program.

(most of the time) …
Clueless. Basically the solver does not generate
a result since the search cannot complete.

Need to consult other approaches, which require formal-method expertise:
Induction proof, find invariants, theorem proving, etc.
If interested, check out 6.512 https://frap.csail.mit.edu/main

Verifying Hardware Designs

• Hardware RTL code works as if a big loop

module divideby3FSM (input clk, input reset, output q);
 reg [1:0] state, nextstate;

 always @ (posedge clk) // state register
 if (reset) state <= 2'b00;
 else state <= nextstate;

 always @ (*) // next state logic
 case (state)
 2'b00: nextstate = 2’b01;
 2’b01: nextstate = 2’b10;
 2’b10: nextstate = 2’b00;
 default: nextstate = 2’b00;
 endcase

 assign q = (state == 2'b00); // output logic
endmodule

A divide-3 FSM

Toolchains to Verify Hardware

module divideby3FSM (input clk, input reset, output q);
reg [1:0] state, nextstate;

always @ (posedge clk) // state register
if (reset) state <= 2'b00;
else state <= nextstate;

always @ (*) // next state logic

case (state)
2'b00: nextstate = 2’b01;
2’b01: nextstate = 2’b10;
2’b10: nextstate = 2’b00;
default: nextstate = 2’b00;

endcase

assign q = (state == 2'b00); // output logic
endmodule

A representation that
supports symbolic execution

(e.g., Rosette)

Compilation Toolchain
(in Recitation)

Verify hardware as if
verifying software

Directly use hardware
verification tools

Verilog code

An Example: Verify ISA Correctness

• Question 1: What assertion should we put into our RTL code?

• Question 2: If I have a 5-stage pipelined processor, when do I place the assertion?

• Question 3: If I want to catch some bypass bugs, how should I initialize the state
of the processor?

RISC-V Instruction Set Specification

If interested, check x86
ISA specification for

“add”

A Tentative Plan

assign ADD_retiring = (pre.opcode & 16'b1111_1110_0000_0000) == 16'b0001_1000_0000_0000;
assign ADD_result = pre.R[pre.opcode[8:6]] + pre.R[pre.opcode[5:3]];
assign ADD_Rd = pre.opcode[2:0];

assert property (@(posedge clk) disable iff (reset_n)
ADD_retiring |-> (ADD_result == post.R[ADD_Rd]));

End-to-End Verification of ARM® Processors with ISA-Formal; Reid et al.; CAV’16

The instruction encoding below follows ARM ISA,
different from RISCV from the last slide.

A Problem: Register Renaming

• A performance optimization to resolve WAW (write-after-write) data
dependency

• Modern out-of-order processors do register renaming on-the-fly
• Many different implementations, check out 6.823/6.5900

• Problem: How do we verify such processors?

addi r1, r1, 4
ld r2, 0(r1)
addi r1, r1, 4
ld r3, 0(r1)
addi r1, r1, 4
ld r4, 0(r1)

addi r1, r1, 4
ld r2, 0(r1)
addi r11, r1, 4
ld r3, 0(r11)
addi r12, r11, 4
ld r4, 0(r12)

Shadow logic to
implement correct

renaming logic

Summary

• Formal Verification: rigor, exhaustiveness, automation

Applications

Solvers

Methods

For hardware verification: often needs domain
expertise to translate specification to assertions

See some algorithms for SAT and SMT
Understand how complex and unpredictable the
solver’s performance can be

See symbolic execution as an example
There exist many other approaches: model
checking, theorem proving, etc.

Next: Recitations

Hardware Formal Verification Toolchains

	Default Section
	Slide 1: Formal Verification for Hardware Security

	What is formal verification and its characteristics
	Slide 2: Recall Hardware Bugs
	Slide 3
	Slide 4: Program/Design Testing
	Slide 5: Program/Design Verification
	Slide 6: Formal Verification

	formal verification: a top-down view
	Slide 7: Overall, it is a search problem…
	Slide 8: How does formal verification work?
	Slide 9: Symbolic Execution: A Simple Example #1
	Slide 10: A Simple Example #2
	Slide 11: How does formal verification work?
	Slide 12: Big Advancements in the Past Decade

	under the hood: SMT and SAT
	Slide 13: SAT in a Nutshell
	Slide 14: Where are we today?
	Slide 15: Problem Representation
	Slide 16: SAT Solvers: A Condensed History

	An example of how SAT algorithm works
	Slide 17: Basic DLL Search
	Slide 18: Basic DLL Search
	Slide 19: Basic DLL Search
	Slide 20: Basic DLL Search
	Slide 21: Basic DLL Search
	Slide 22: Basic DLL Search
	Slide 23: Basic DLL Search
	Slide 24: Basic DLL Search
	Slide 25: Basic DLL Search
	Slide 26: Conflict Driven Learning and Non-chronological Backtracking
	Slide 27: Conflict Driven Learning and Non-chronological Backtracking
	Slide 28: Conflict Driven Learning and Non-chronological Backtracking
	Slide 29: Conflict Driven Learning and Non-chronological Backtracking
	Slide 30: Conflict Driven Learning and Non-chronological Backtracking
	Slide 31: Conflict Driven Learning and Non-chronological Backtracking
	Slide 32: Conflict Driven Learning and Non-chronological Backtracking
	Slide 33: Conflict Driven Learning and Non-chronological Backtracking
	Slide 34: Conflict Driven Learning and Non-chronological Backtracking
	Slide 35: Conflict Driven Learning and Non-chronological Backtracking
	Slide 36: Conflict Driven Learning and Non-chronological Backtracking
	Slide 37: Conflict Driven Learning and Non-chronological Backtracking
	Slide 38: Conflict Driven Learning and Non-chronological Backtracking
	Slide 39: Conflict Driven Learning and Non-chronological Backtracking
	Slide 40: What’s the big deal?

	SMT
	Slide 41: Big Advancements in the Past Decade
	Slide 42: The Basic SMT Problem
	Slide 43: Background Theories
	Slide 44: CDCL(T): Key Idea
	Slide 45: CDCL(T): Key Idea
	Slide 46: CDCL(T): Simple Version
	Slide 47: Interacting with SAT/SMT Solvers

	Hardware Verificaiton: model checking
	Slide 48: Verifying Hardware Designs
	Slide 49: Toolchains to Verify Hardware

	A Hardware Verification Exercise
	Slide 50: An Example: Verify ISA Correctness
	Slide 51: A Tentative Plan
	Slide 52: A Problem: Register Renaming
	Slide 53: Summary
	Slide 54: Next: Recitations Hardware Formal Verification Toolchains

