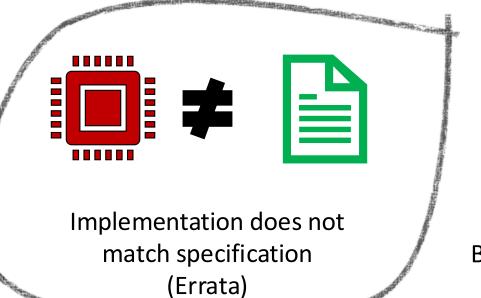
Formal Verification for Hardware Security

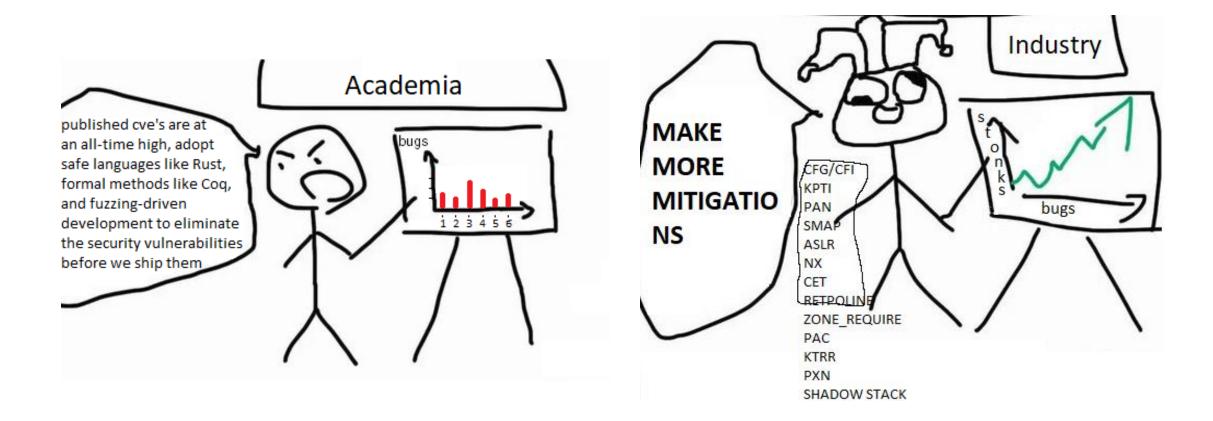
Mengjia Yan Spring 2025

Slides credit: Sharad Malik (Princeton)

Recall Hardware Bugs

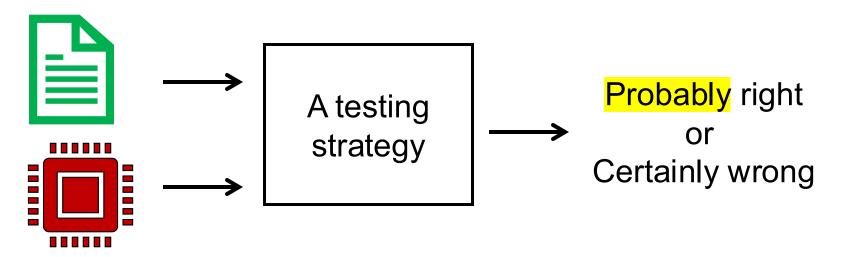


Vague specification



https://twitter.com/gf_256/status/1321677851633029120/

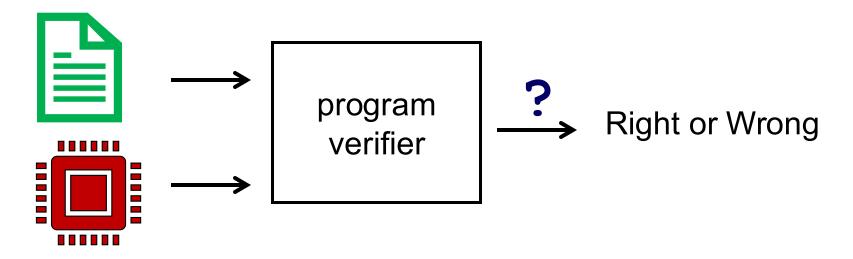
Program/Design Testing



Program testing can be quite effective for showing the presence of bugs, but is hopelessly inadequate for showing their absence. – Edsger Dijkstra

- In principle: *Exhaustive* testing can prove correctness
- In practice: Test cases are generated to cover <u>some (not all)</u> inputs/statements/branches/paths etc.

Program/Design Verification



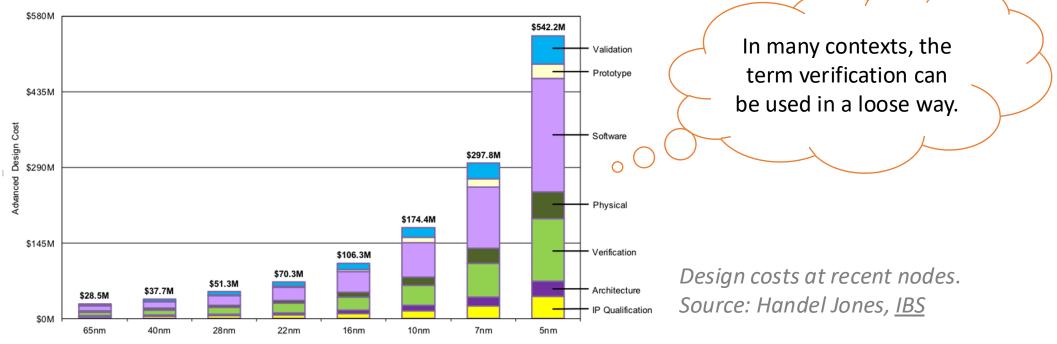
The goal: (under some conditions), program verifier

- can provide a proof (if program is right)
- or provide a counterexample (if program is wrong)

Formal Verification

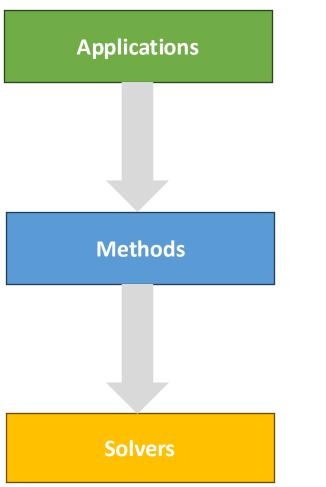
"Verification": formally **prove** that the program/design is correct

- Rigor: uses well established mathematical foundations
- Exhaustiveness: considers all possible program behaviors
- Automation: uses computers to verify programs!



Overall, it is a search problem...

How does formal verification work?



Program verification, program synthesis, test generation, etc. Some SystemVerilog Code + Assertion check for specification violation

Symbolic execution, model checking, invariant generation, etc.

(! (= a (* 2 (+ 10 b))))

SAT, SMT, BDDs, proof systems, etc.

Symbolic Execution: A Simple Example #1

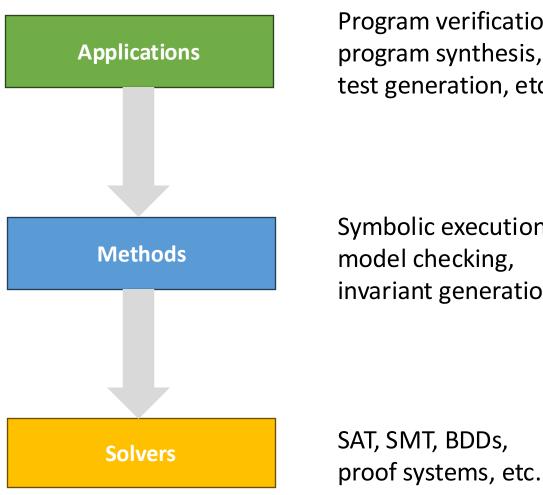
```
C code:
                                     Rosette code:
int hash(int z){
                                     (define (hash z)
                                       (* (+ z 10) 2)
   return (z+10)*2;
int obscure(int x, int y)
                                     (define (obscure x y)
                                       (if (= x (hash y)))
   if (x==hash(y))
                                               (assert #t)
      assert(false);
                                               (- x y))
   return 1;
                     How will fuzzing
                      behave to find
                       this error?
```

A Simple Example #2

```
int hash2(int z){
   if (z>10)
     z = z - 10;
   return z;
int obscure(int x, int y)
{
   if (x==hash2(y))
     error();
   return x-y;
```

- Build execution tree with all the execution paths
- Each execution path has logical formula to describe path conditions
- The common pitfall: extremely large formula -> memory overhead and scalability issue

How does formal verification work?



Program verification, program synthesis, test generation, etc.

int hash2(int z){ if (z>10) z = z - 10;return z; int obscure(int x, int y) if (x==hash2(y)) error(); return x-y;

=> Linux kernel, crypto libraries, processor Verilog code...

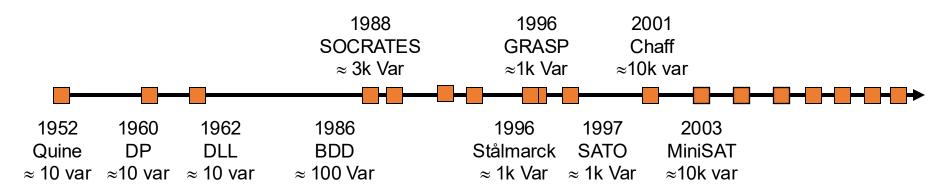
Symbolic execution, model checking, invariant generation, etc.

(! (= a (* 2 (+ 10 b))))

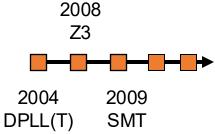
Success with SAT is at the heart of formal reasoning about systems.

Big Advancements in the Past Decade

(1) SAT: is a Boolean formula f satisfiable?



(2) SMT (Satisfiability Modulo Theory): is a first-order logic formula theory-satisfiable?

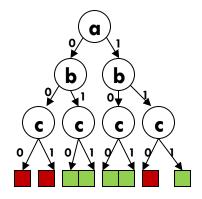


SAT in a Nutshell

Given a propositional logic (Boolean) formula, find a variable assignment such that the formula evaluates to 1, or prove that no such assignment exists.

$$F = (a + b)(a' + b' + c)$$

 \Box For *n* variables, there are 2^n possible truth assignments to be checked.



□ First established NP-Complete problem.

S. A. Cook, The complexity of theorem proving procedures, Proceedings, Third Annual ACM Symp. on the Theory of Computing, 1971, 151-158

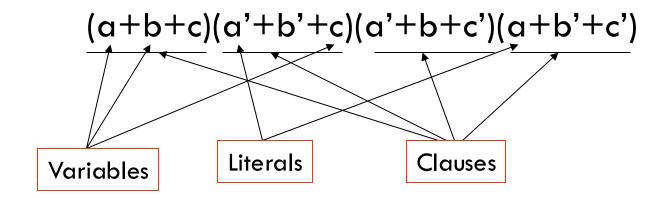
Where are we today?

- □ Complexity of SAT: NP-complete
 - But often tractable in practice
- Intractability of the problem no longer daunting
 - Can regularly handle practical instances with millions of variables and constraints
- SAT has matured from theoretical interest to practical impact
 - Electronic Design Automation (EDA)
 - Widely used in many aspects of chip design
 - Increasing use in software verification
 - Commercial use at Microsoft, Amazon,...

Problem Representation

Conjunctive Normal Form (CNF)

- Representation of choice for modern SAT solvers
- Every clause needs to be evaluated to TRUE



SAT Solvers: A Condensed History

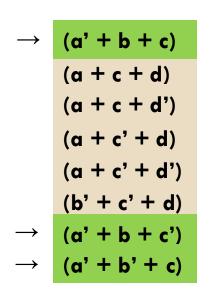
Deductive

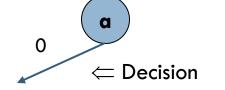
- Davis-Putnam 1960 [DP]
- Iterative existential quantification by "resolution"
- Backtrack Search
 - Davis, Logemann and Loveland 1962 [DLL]
 - Exhaustive search for satisfying assignment
- Conflict Driven Clause Learning [CDCL]
 - GRASP: Integrate a constraint learning procedure, 1996
- Locality Based Search
 - Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and others, 2001 onwards

 \bigcirc

- Added focus on efficient implementation
- □ "Pre-processing"
 - Peephole optimization, e.g. miniSAT, 2005

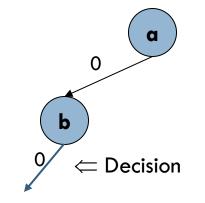
We cover these two algorithms to give you a taste of how the search works.

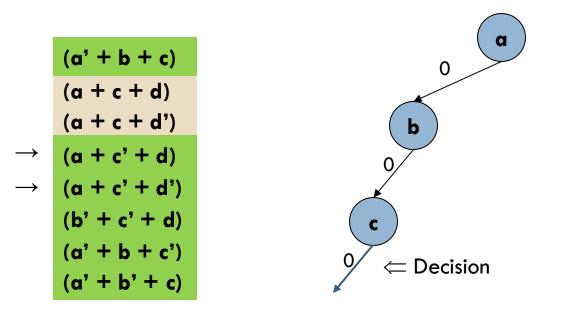


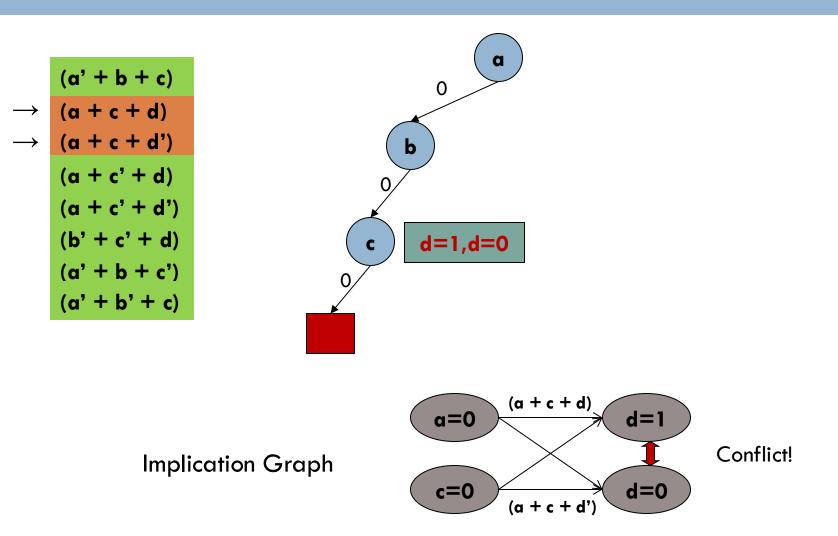


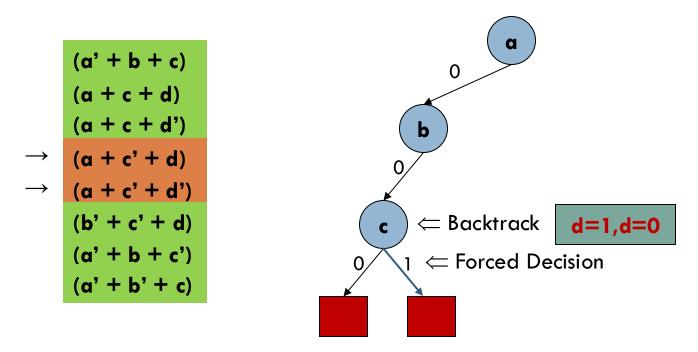
M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Communications of the ACM, 5:394–397, 1962

(a' + b + c)
(a + c + d)
(a + c + d')
(a + c' + d)
(a + c' + d')
(b' + c' + d)
(a' + b + c')
(a' + b' + c)





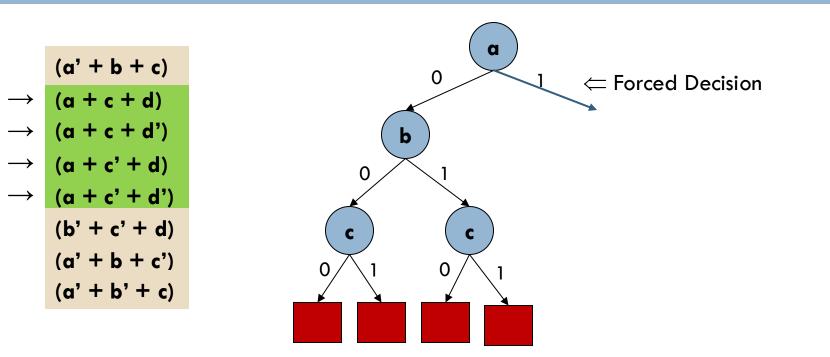


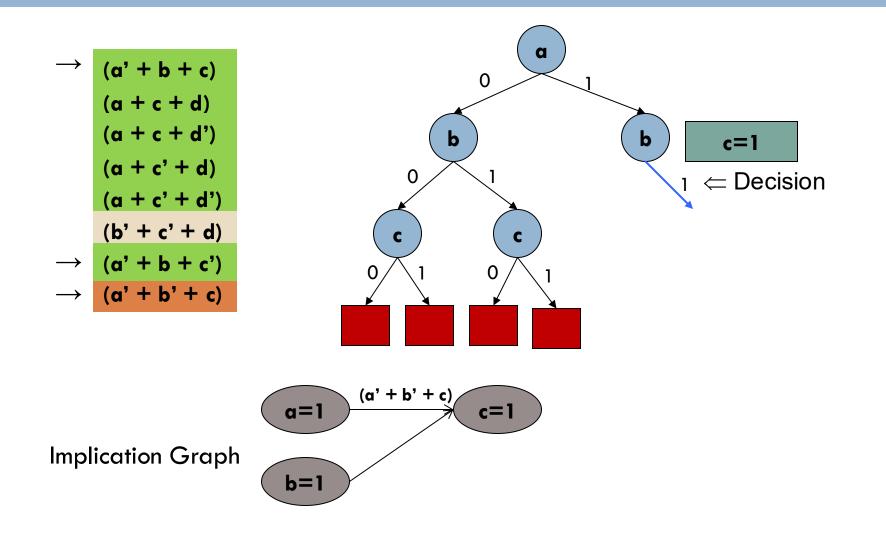


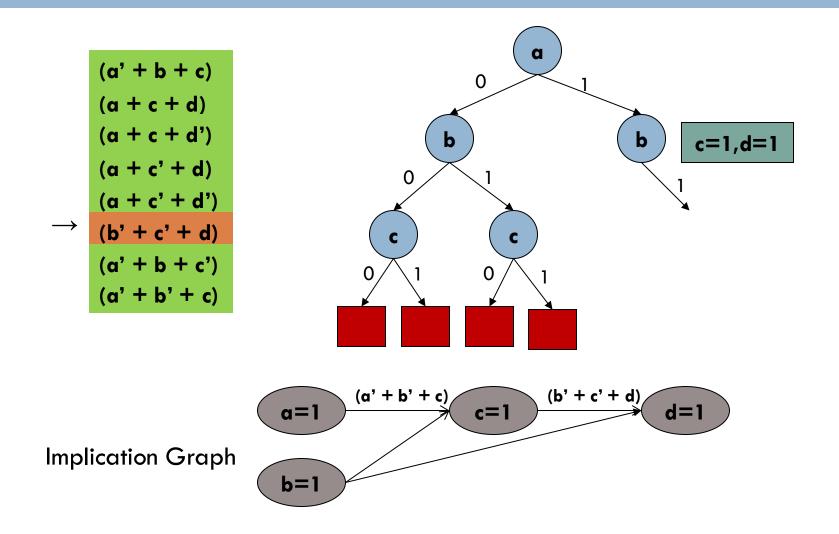
Think about the search performance:

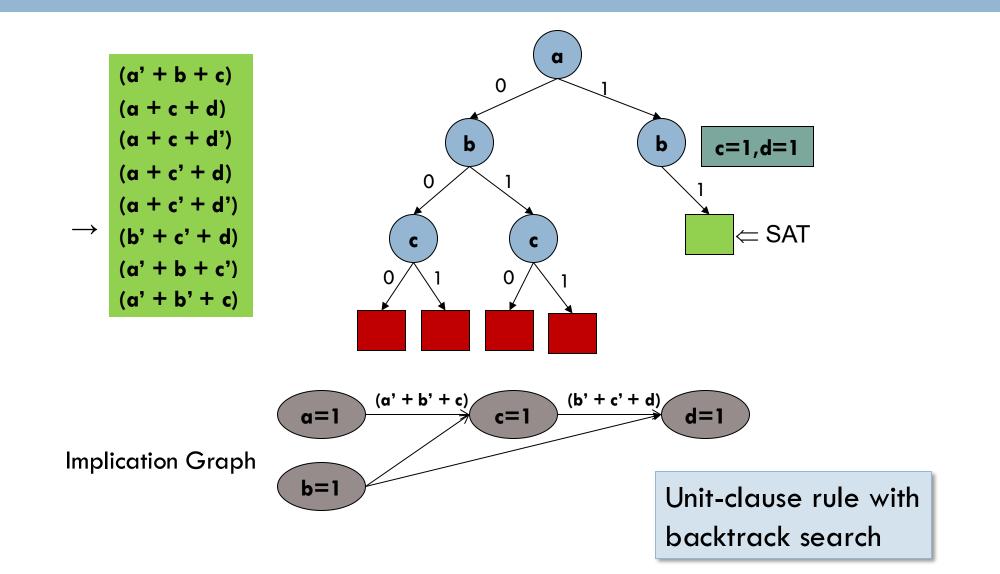
- Do you always need to reach to the bottom to detect a conflict?

How fast a conflict is detected. Order matters.





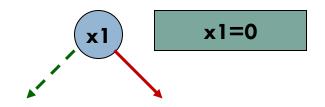


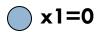


x1 + x4 x1 + x3' + x8' x1 + x8 + x12 x2 + x11 x7' + x3' + x9 x7' + x8 + x9' x7 + x8 + x10' x7 + x10 + x12'

J. P. Marques-Silva and Karem A. Sakallah, "GRASP: A Search Algorithm for Propositional Satisfiability", *IEEE Trans. Computers*, C-48, 5:506-521, 1999.

- x1 + x4
- x1 + x3' + x8'
- x1 + x8 + x12
- x2 + x11
- x7' + x3' + x9
- x7' + x8 + x9'
- x7 + x8 + x10'
- x7 + x10 + x12'



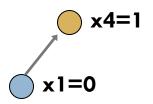


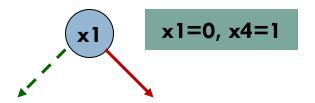
Red text means evaluated to 0, and green means evaluated to 1

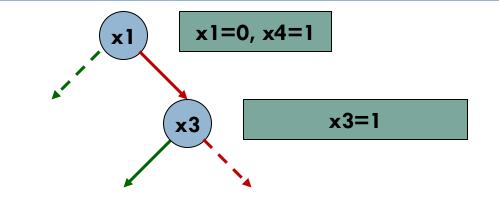
For the graph on the left:

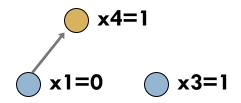
Blue circles means free variable, and brown circles mean inferred variable. Edge describes the inferred relationship.

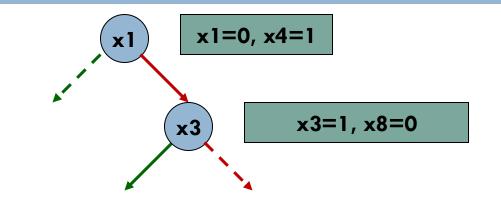
- x1 + x4
- x1 + x3' + x8'
- x1 + x8 + x12
- $x^{2} + x^{11}$
- x7' + x3' + x9
- x7' + x8 + x9'
- x7 + x8 + x10'
- x7 + x10 + x12'

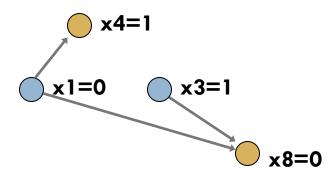


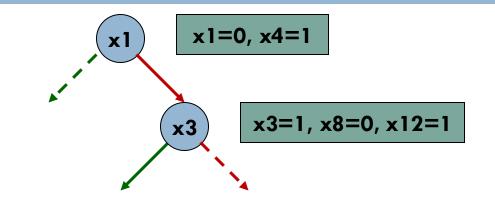


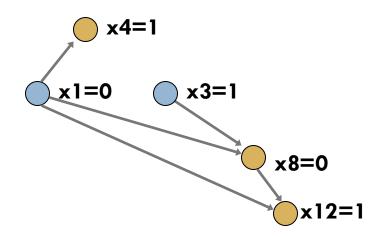


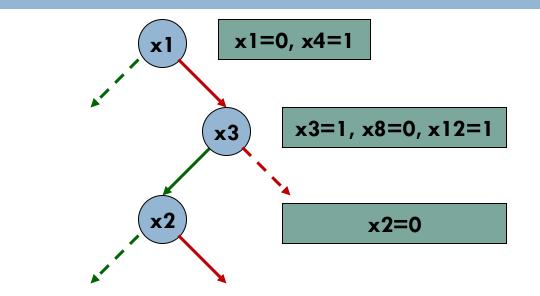


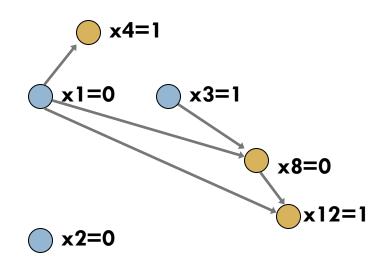


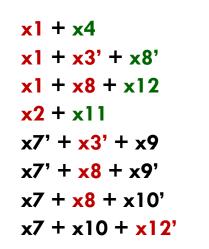


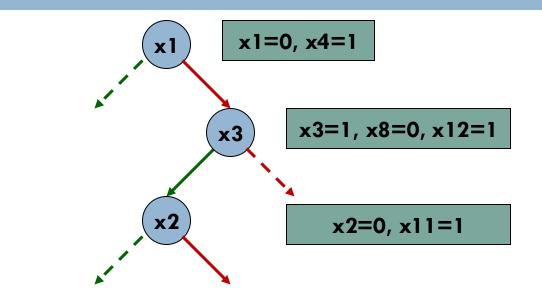


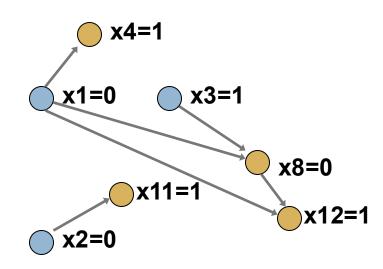


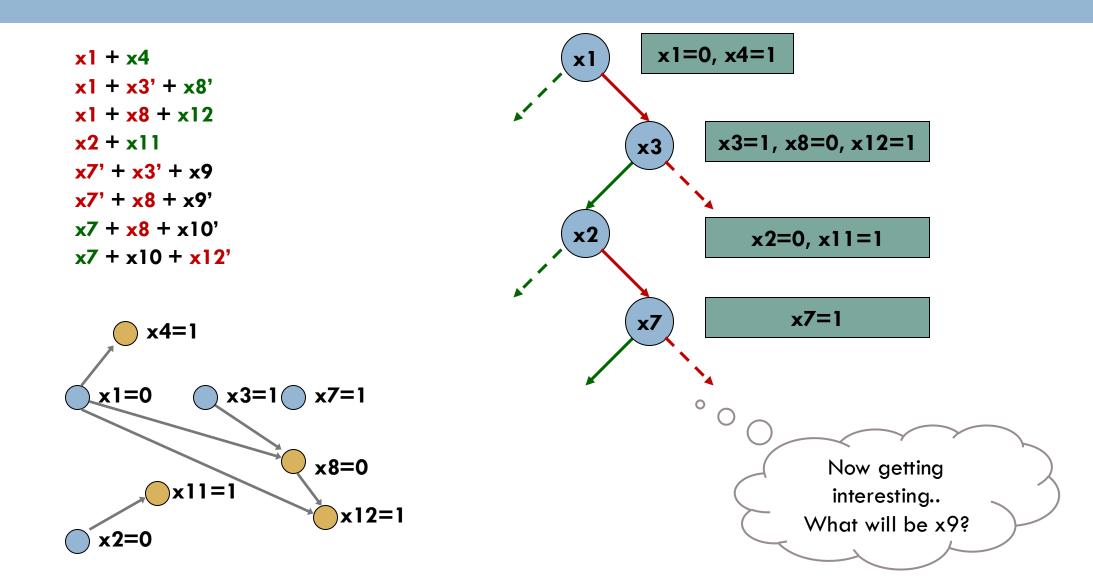


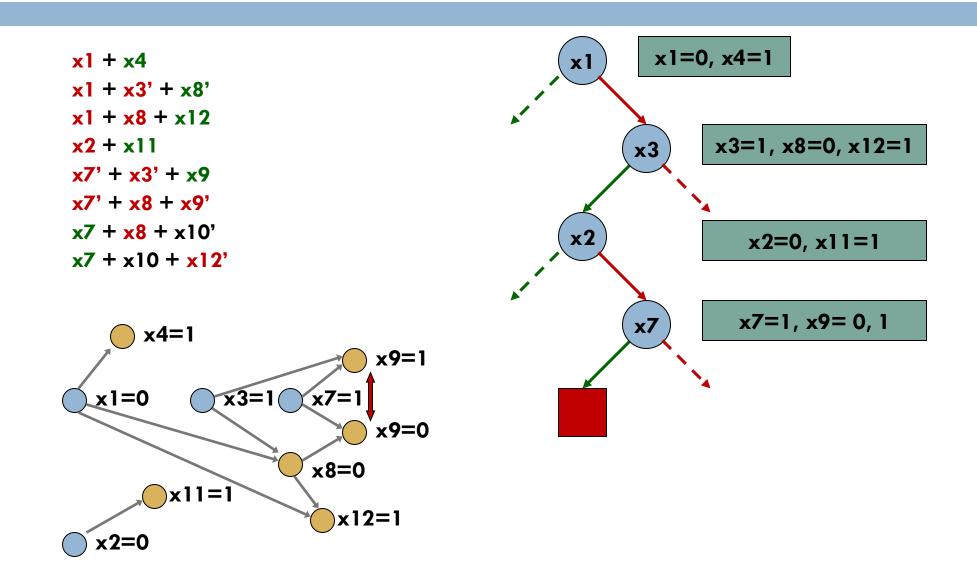


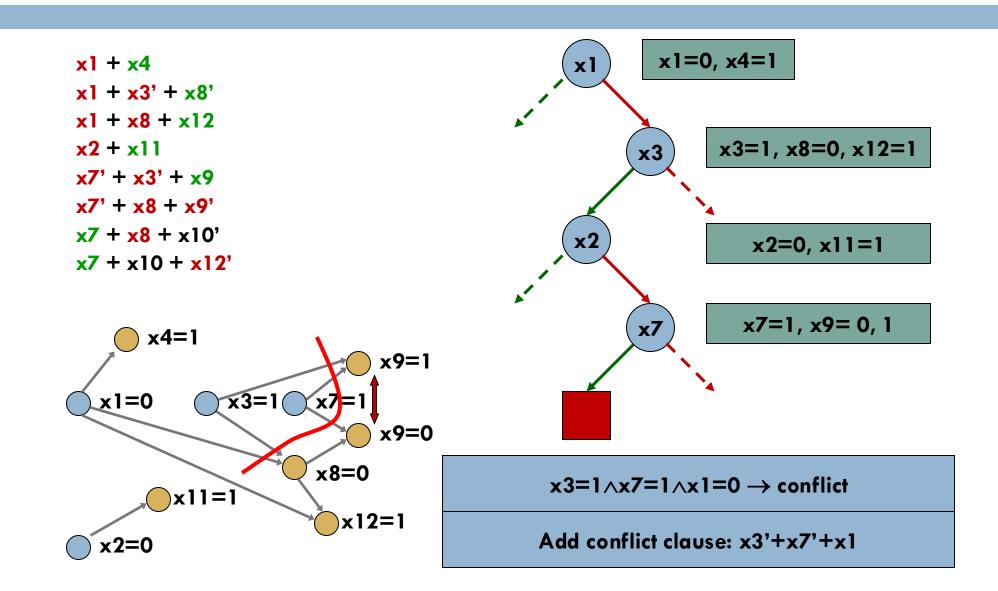




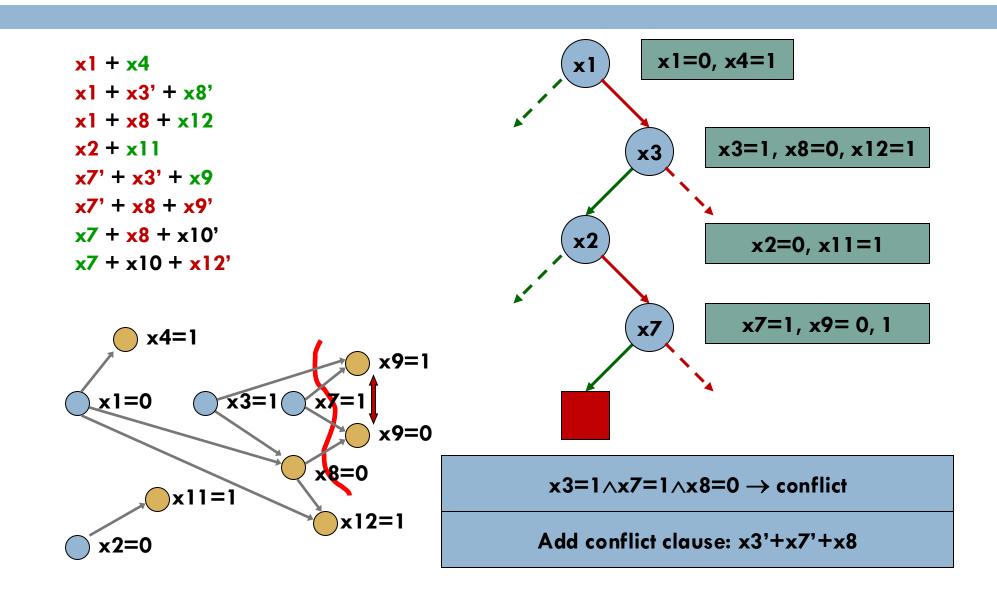




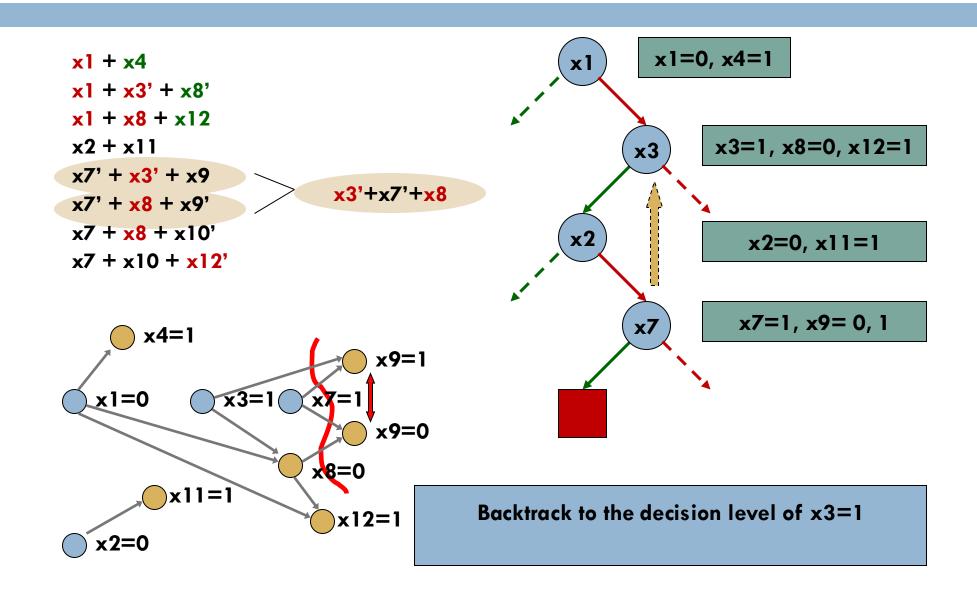




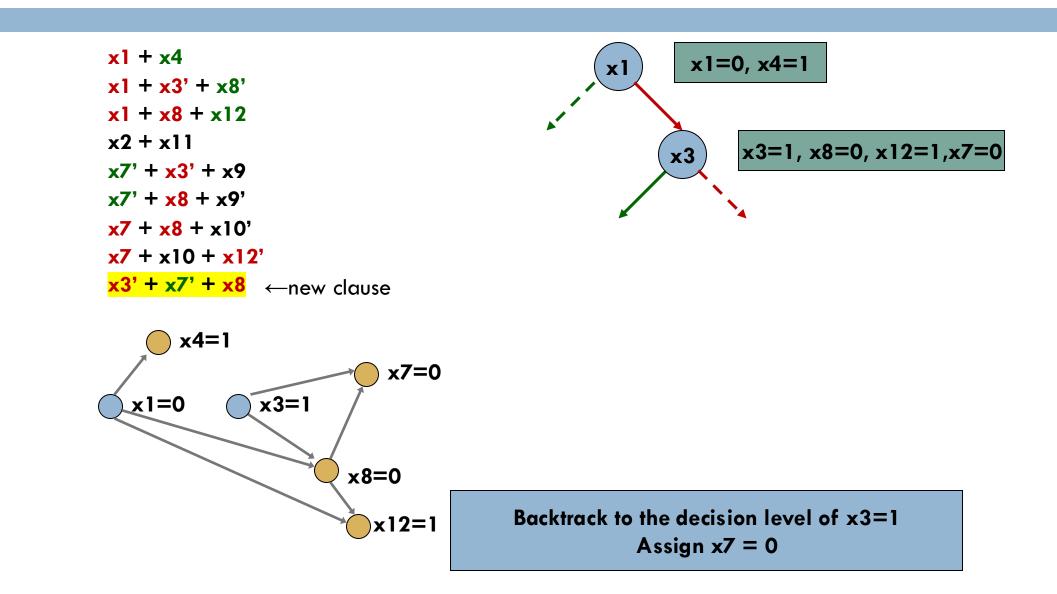
Conflict Driven Learning and Non-chronological Backtracking



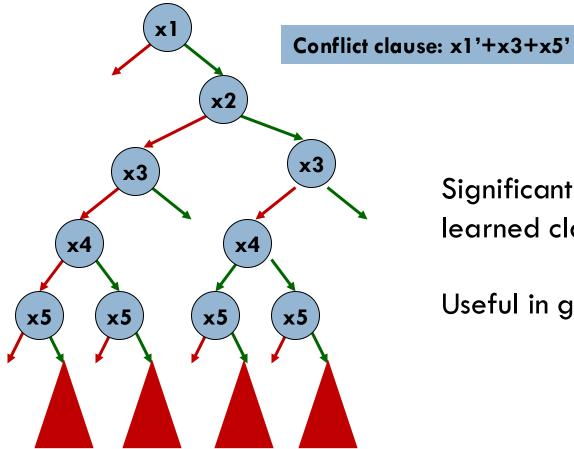
Conflict Driven Learning and Non-chronological Backtracking



Conflict Driven Learning and Non-chronological Backtracking



What's the big deal?

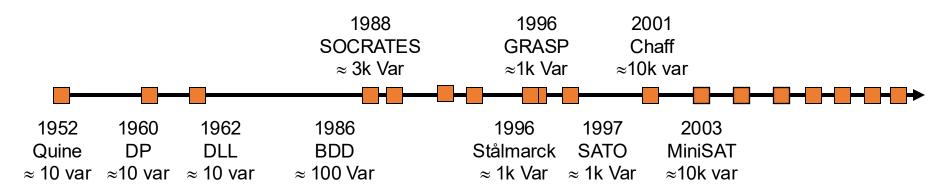


Significantly prune the search space – learned clause is useful forever!

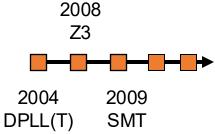
Useful in generating future conflict clauses.

Big Advancements in the Past Decade

(1) SAT: is a Boolean formula f satisfiable?

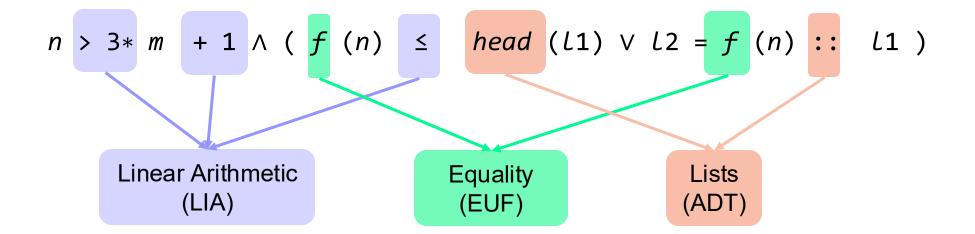


(2) SMT (Satisfiability Modulo Theory): is a first-order logic formula theory-satisfiable?



The Basic SMT Problem

• Determining the satisfiability of a logical formula with regards to some combination of background theories



Background Theories

 $x = y \Rightarrow f(x) = f(y)$ Uninterpreted Funs Integer/Real Arithmetic $2x+y = 0 \land 2x-y = 4 \Rightarrow x = 1$ Floating Point Arithmetic $x+1 \neq NaN \land x < \infty \Rightarrow x+1 > x$ $4 \cdot (x \gg 2) = x \& \sim 3$ **Bit-vectors** Strings and RegExs $x = y \cdot z \land z \in ab * \Rightarrow |x| > |y|$ Arrays $i = j \Rightarrow \text{store}(a, i, x) [j] = x$ Algebraic Data Types $x \neq Leaf \Rightarrow \exists I, r : Tree(\alpha). \exists a : \alpha. x = Node(I, a, r)$ Finite Sets $e1 \in x \land e2 \in x \setminus e1 \Rightarrow$ $\exists y, z : Set(\alpha). |y| = |z| \land x = y \cup z \land y \neq \emptyset$ **Finite Relations** $(x, y) \in r \land (y, z) \in r \Rightarrow (x,z) \in r$

...

CDCL(T): Key Idea

- SAT solver handles Boolean structure of the formula
 - Treat each atomic formula as a propositional variable
 - Resulting formula is called a Boolean abstraction (B)
- Example

$$F: (x=z) \land ((y=z \land x = z+1) \lor \neg (x=z))$$

b1 b2 b3 b1

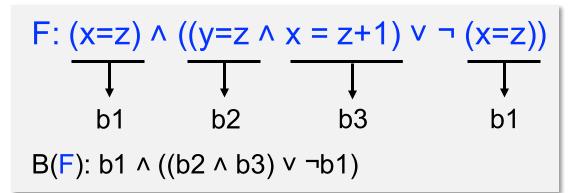
B(F): b1 ∧ ((b2 ∧ b3) ∨ ¬b1)

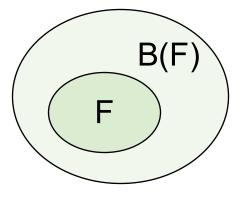
Boolean abstraction (B) is defined inductively over formulas B is a bijective function, B⁻¹ also exists

$$B^{-1}$$
 (b1 \land b2 \land b3): (x=z) \land (y=z) \land (x=z+1)

B⁻¹ (b1 ∨ b2'): (x=z) ∨ ¬(y=z)

CDCL(T): Key Idea





- Use SAT solver to decide satisfiability of B(F)
 - If B(F) is Unsat, then F is Unsat
 - If B(F) has a satisfying assignment A, F may still be Unsat
- Example: b1, b2, b3 are not independent propositions! SAT solver finds a satisfying assignment A: b1 ^ b2 ^ b3 But, B⁻¹(A) is unsatisfiable modulo theory (x=z) ^ (y=z) ^ (x=z+1) is not satisfiable

B(F) is an *over-approximation* of F

CDCL(T): Simple Version

- 1. Generate a Boolean abstraction B(F)
- 2. Use SAT solver to decide satisfiability of B(F)
 - If B(F) is Unsat, then F is Unsat
 - Otherwise, find a satisfying assignment A
- 3. Use theory solver to check if $B^{-1}(A)$ is satisfiable modulo T
 - If B⁻¹(A) is satisfiable modulo theory T, then F is satisfiable
 - Otherwise, B⁻¹(A) is unsatisfiable modulo T
 Add ¬A to B(F), and backtrack in SAT

Repeat (2, 3) until there are no more satisfying assignments

Interacting with SAT/SMT Solvers

A counterexample is generated. You can use it to fix your program.

Interact with a solver

A proof is generated. Your program is bug-free!

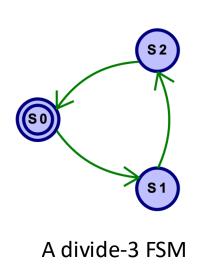
(most of the time) ...

Clueless. Basically the solver does not generate (a result since the search cannot complete.

Need to consult other approaches, which require formal-method expertise: Induction proof, find invariants, theorem proving, etc. If interested, check out 6.512 https://frap.csail.mit.edu/main

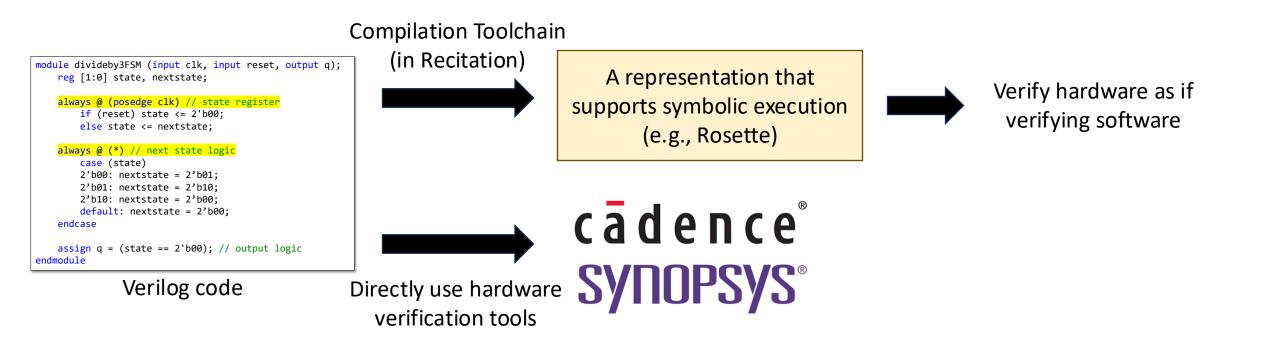
Verifying Hardware Designs

• Hardware RTL code works as if a big loop

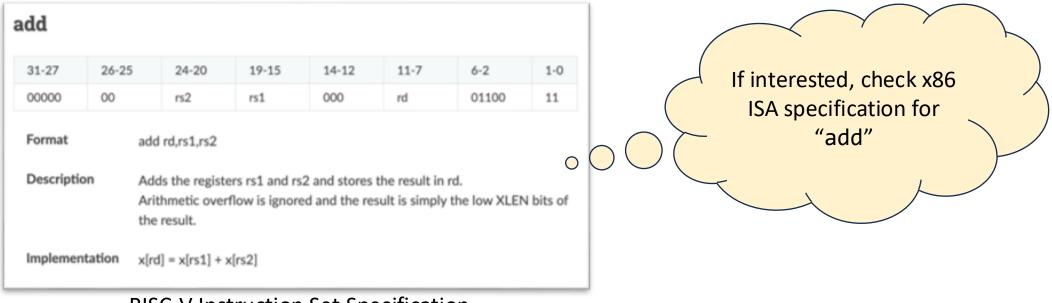


```
module divideby3FSM (input clk, input reset, output q);
    reg [1:0] state, nextstate;
    always @ (posedge clk) // state register
        if (reset) state <= 2'b00;</pre>
        else state <= nextstate;</pre>
    always @ (*) // next state logic
        case (state)
        2'b00: nextstate = 2'b01;
        2'b01: nextstate = 2'b10;
        2'b10: nextstate = 2'b00;
        default: nextstate = 2'b00;
    endcase
    assign q = (state == 2'b00); // output logic
endmodule
```

Toolchains to Verify Hardware



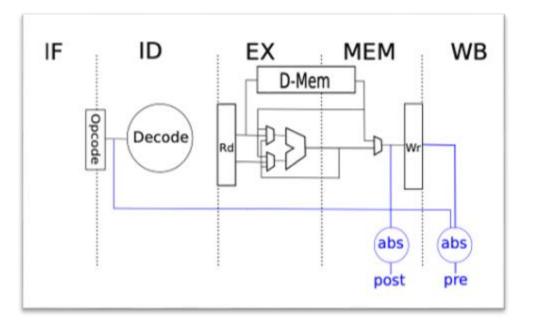
An Example: Verify ISA Correctness



RISC-V Instruction Set Specification

- Question 1: What assertion should we put into our RTL code?
- Question 2: If I have a 5-stage pipelined processor, when do I place the assertion?
- Question 3: If I want to catch some bypass bugs, how should I initialize the state of the processor?

A Tentative Plan



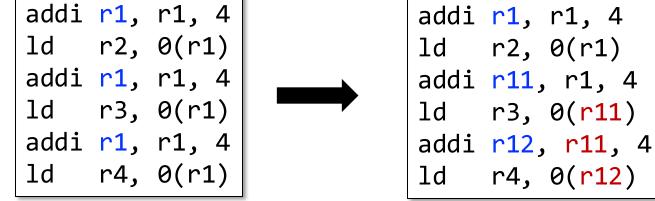
The instruction encoding below follows ARM ISA, different from RISCV from the last slide.

```
assign ADD_retiring = (pre.opcode & 16'b1111_1110_0000_0000) == 16'b0001_1000_0000_0000;
assign ADD_result = pre.R[pre.opcode[8:6]] + pre.R[pre.opcode[5:3]];
assign ADD_Rd = pre.opcode[2:0];
assert property (@(posedge clk) disable iff (reset_n)
ADD retiring |-> (ADD result == post.R[ADD Rd]));
```

End-to-End Verification of ARM[®] Processors with ISA-Formal; Reid et al.; CAV'16

A Problem: Register Renaming

• A performance optimization to resolve WAW (write-after-write) data dependency

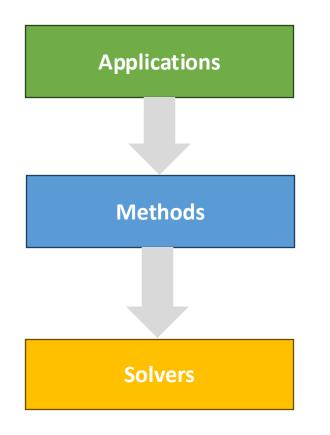


- Modern out-of-order processors do register renaming on-the-fly
 - Many different implementations, check out 6.823/6.5900
- Problem: How do we verify such processors?

Shadow logic to implement correct renaming logic

Summary

• Formal Verification: rigor, exhaustiveness, automation



For hardware verification: often needs domain expertise to translate specification to assertions

See symbolic execution as an example There exist many other approaches: model checking, theorem proving, etc.

See some algorithms for SAT and SMT Understand how complex and unpredictable the solver's performance can be

Next: Recitations

Hardware Formal Verification Toolchains

