
Software-Hardware Contract
for Side Channel Defenses

Mengjia Yan

Spring 2025

Attack Examples

2

def check_password(input):

 size = len(password);

 for i in range(0,size):
 if (input [i] != password[i]):
 return ("error");

 return (“success”);

Example #1: termination time vulnerability for i = n-1 to 0 do
 r = sqr(r)
 r = r mod n
if ei == 1 then

 r = mul(r, b)
 r = r mod n
 end
end

Example #2: RSA cache vulnerability

……

Ld1: uint8_t secret = *kernel_address;

Ld2: unit8_t dummy = probe_array[secret*64];

Example #3: Meltdown

Who to blame? Who to fix the problem?

3

Software Developers Hardware Designers

These Attacks Break SW-HW Contract

4

Instruction Set
Architecture (ISA)

Software

Hardware

The contract
for functional
correctness.

Software Developer's Problem

5

Software developers need to write
software for devices with unknown
design details.

Processor A Processor B Processor C

Secure? Secure? Secure?

Hardware Designer’s Problem

6

Hardware designers need to design
processors for arbitrary programs.

Program A Program B Program C

Secure? Secure? Secure?

Example: Termination Time Vulnerability

• How to fix it?

7

Make the computation time
independent from the secretdef check_password(input):

 for i in range(0,128):
 if (input [i] != password[i]):
 return ("error");

 return (“success”); What do we mean by
“independent”? Let’s

be a bit more rigorous.

Non-Interference Example

8

High: root
password, etc.

Low: public data,
website content

• Intuitively: not affecting
• Any sequence of low inputs will produce the same low outputs, regardless

of what the high level inputs are.
• Example: a password box

Non-Interference: A Formal Definition

• The definition of noninterference for a deterministic program P

9

∀ M1, M2, P

 M1L = M2L ∧ (M1, P) →∗ M1′ ∧ (M2, P) →∗ M2′

⟹ M1L
′ = M2L′

Non-Interference for Side Channels

• The definition of noninterference for a deterministic program P

10

∀ M1, M2, P

 M1L = M2L ∧ (M1, P) →∗ M1′ ∧ (M2, P) →∗ M2′

⟹ O1=O2

O1 O2

What should be included in the observation trace?

Instruction completion time
Addresses issued to the memory systems (for both data and instruction)

Understand the Property

Consider input as part of M
• What is ML ?
• What is MH ?
• What is O ?

11

def check_password(input):

 for i in range(0,128):
 if (input [i] == password[i]):
 return ("error");

 return (“success”);

∀ M1, M2, P

 M1L = M2L ∧ (M1, P) →∗ M1′ ∧ (M2, P) →∗ M2′

⟹ O1=O2

O1 O2

Constant-Time Programming

Think about whether the statement below is true or false.

• For any public inputs, secret values, and machines, a program always takes
the same amount of time to execute.

• For any public inputs, secret values, a program always takes the same amount
of time when executing on the same machine.

• For any secret values, a program always takes the same amount of time for
the same public input when executing on the same machine.

• For any secret values, a program always takes the same amount of time for
the same input when executing on the same machine, and this holds for
arbitrary public inputs.

12

Data-oblivious/Constant-time programming

• How to deal with conditional branches/jumps?

• How to deal with memory accesses?

• How to deal with arithmetic operations: division, shift/rotation,
multiplication?

13

For details on real-world constant-time crypto, check this out:

https://www.bearssl.org/constanttime.html

Your Code

Compiler

Hardware

14

def check_password(input):

 for i in range(0,128):
 if (input [i] != password[i]):
 return ("error");

 return (“success”);

def check_password(input):

dontmatch = false;

 for i in range(0,128):

 if (input [i] != password[i]):

dontmatch = true;

return dontmatch;

15

def check_password(input):

 dontmatch = false;

 for i in range(0,128):

dontmatch |= (input [i] != password[i])

 return dontmatch;

def check_password(input):

dontmatch = false;

 for i in range(0,128):

 if (input [i] != password[i]):

dontmatch = true;

return dontmatch;

Real-world Crypto Code

From libsodium cryptographic library:

16

for (i = 0; i < n; i++)

 d |= x[i] ^ y[i];

return (1 & ((d - 1) >> 8)) - 1;

Compare two buffers x and y, if match, return 0, otherwise, return -1.

What do we assume
about the hardware

here?

Examples from Cauligi et al. FaCT: A DSL for Timing-Sensitive Computation. PLDI’19

Another Example

17

From the “donna” Curve25519 implementation

for (i = 0; i < 5; ++i) {

 const limb x = swap & (a[i] ^ b[i]);

 a[i] ^= x;

 b[i] ^= x;

}

for (i = 0; i < 5; ++i)
{

 if (swap) {

 tmp = a[i];

 a[i] = b[i];

 b[i] = tmp;

 }

} swap is a mask, either 0 or 0xFFFFFFFF

Eliminate Secret-dependent Branches

• Be a master of bitmask operations

• An instruction: cmov_

• Check the state of one or more of the status flags in the EFLAGS
register (cmovz: moves when ZF=1)

• Perform a move operation if the flags are in a specified state

• Otherwise, a move is not performed (as if a NOP) and execution
continues with the instruction following the cmov instruction

18

Conditional Branches

• Original program

 if (secret) x = e

• Use bitmask

 x = (-secret & e) | (secret - 1) & x

• Use cmov

test secret, secret // set ZF=1 if zero

cmovz r2, r1 // r2 for x, r1 for e

19

What do we assume
about the hardware

here?
(Hint: there are two.)

More Conditional Branches

20

if (secret)
 res = f1();
else
 res = f2();

r1 ← f1();
r2 ← f2();
mov r3, r1
test secret, secret
cmovz r3, r2
// res in r3

Potential problems:

• What if we have nested branches?

• What if when secret==0, f1 is not

executable, e.g., causing page fault or divide by

zero?

• What if f1 or f2 needs to write to memory,

perform IO, make system calls?

Data-oblivious/Constant-time programming

• How to deal with conditional branches/jumps?

• How to deal with memory accesses?

• How to deal with arithmetic operations: division, shift/rotation,
multiplication?

21

Memory Accesses

• Performance overhead.

• Techniques such as ORAM can reduce
the overhead when the buffer is large

22

a = buffer[secret]

for (i=0; i<size; i++)
{
 tmp = buffer[i];
 xor secret, I //set ZF
 cmovz a, tmp
}

An Optimization

• Proposal: reduce the redundant accesses by only accessing one byte
in each cache line.

23

offset = secret % 64;
for (i=0; i<size; i+=64)
{

index = i + offset;
 tmp = buffer[index];
 xor secret, index
 cmovz a, tmp
}

for (i=0; i<size; i++)
{
 tmp = buffer[i];
 xor secret, i
 cmovz a, tmp
}

What do we
assume about the
hardware here?

OpenSSL Patches Against Timing Channel

24

Yarom et al. CacheBleed: A Timing Attack on OpenSSL Constant Time RSA.

https://faculty.cc.gatech.edu/~genkin/cachebleed/index.html

Scatter Layout
to mitigate cache attacks

Conventional Layout
Vulnerable to traditional cache attacks 🥹

🥹Vulnerable to L1 bank conflict attacks

Data-oblivious/Constant-time programming

• How to deal with conditional branches/jumps?

• How to deal with memory accesses?

• How to deal with arithmetic operations: division, shift/rotation,
multiplication?

25

Arithmetic Operations

Subnormal floating point numbers

26
Andrysco et al; On Subnormal Floating Point and Abnormal Timing; S&P’15

The Problem and A Solution

27

Rane et al. Secure, Precise, and Fast Floating-Point Operations on x86 Processors. USENIX’16

Single Instruction Multiple Data (SIMD)

Example: 4 pipelined functional units

28

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Vector code

LI VLR, 64 //length

LV V1, R1 // vec 1

LV V2, R2 // vec 2

ADDV.D V3, V1, V2

SV V3, R3

Make Floating-Point Constant Time

29

Parameters for
the actual

computation

Selected
subnormal
numbers

What do we
assume about the
hardware here?

Hardware Assumption:
1. The selected subnormal number

takes the maximum length
2. SIMD returns only if the slowest

lane finishes

How shall we proceed?

• The key problem:
• No explicitly SW-HW contract for timing

• SW developers derive hardware assumptions from existing attacks and
impose implicit assumptions on the hardware.

• Some incoming efforts:
• ARM Data Independent Timing (DIT)

• Intel Data Operand Independent Timing (DOIT)

30

ARM DIT: https://developer.arm.com/documentation/ddi0601/2020-12/AArch64-Registers/DIT--Data-Independent-Timing

Intel DOIT: https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-

operand-independent-timing-isa-guidance.html

So far, we have not discussed
how to deal with speculation…

31

What’s Next?

• Mitigations of transient execution attacks
• By Yuheng Yang

• Fancy interactive simulator to visualize transient execution

• Physical attacks
• By Joseph Ravichandran

• Three in-class real-time demos of physical attacks

• Embedded system attack CTF (recitation)
• Another CTF, prize for winners

32

	Default Section
	Slide 1: Software-Hardware Contract for Side Channel Defenses

	The Problem + Motivation
	Slide 2: Attack Examples
	Slide 3: Who to blame? Who to fix the problem?
	Slide 4: These Attacks Break SW-HW Contract
	Slide 5: Software Developer's Problem
	Slide 6: Hardware Designer’s Problem

	Non-interfernece Security Property
	Slide 7: Example: Termination Time Vulnerability
	Slide 8: Non-Interference Example
	Slide 9: Non-Interference: A Formal Definition
	Slide 10: Non-Interference for Side Channels
	Slide 11: Understand the Property
	Slide 12: Constant-Time Programming

	Constant Time Programming
	Slide 13: Data-oblivious/Constant-time programming
	Slide 14
	Slide 15
	Slide 16: Real-world Crypto Code
	Slide 17: Another Example
	Slide 18: Eliminate Secret-dependent Branches
	Slide 19: Conditional Branches
	Slide 20: More Conditional Branches

	handle memory accesses
	Slide 21: Data-oblivious/Constant-time programming
	Slide 22: Memory Accesses
	Slide 23: An Optimization
	Slide 24: OpenSSL Patches Against Timing Channel

	handle non-constant-time floating-point operations
	Slide 25: Data-oblivious/Constant-time programming
	Slide 26: Arithmetic Operations
	Slide 27: The Problem and A Solution
	Slide 28: Single Instruction Multiple Data (SIMD)
	Slide 29: Make Floating-Point Constant Time

	Constant-time ISA
	Slide 30: How shall we proceed?
	Slide 31: So far, we have not discussed how to deal with speculation…
	Slide 32: What’s Next?

