Software-Hardware Contract
for Side Channel Defenses

Mengjia Yan
Spring 2025

Ui \IRTHE R san

Attack Examples

Example #1: termination time vulnerability

def check password(input):
size = len(password);

for i in range(9,size):

if (input [i] != password[i]):

return ("error");

return (“success”);

Example #2: RSA cache vulnerability

for 1 = n-1 to 0 do
r = sqgr(r)
r = r mod n
if e; == 1 then
r = mul(r, b)
r =r mod n
end
end

Example #3: Meltdown

Ldl: uint8 t secret = *kernel address;

Ld2: unit8 t dummy = probe array[secret*64];

Z

I Who to blame? Who to fix the problem?

JT6

I These Attacks Break SW-HW Contract

28:8;5007011010
%0110 Software
The contract

| > Instruction Set for functional
Architecture (ISA) correctness.
9P
f=le
AU Hardware

I Software Developer's Problem @

Software developers need to write
1010152701101 software for devices with unknown

design details.
l 5€cure?\ Secure?
dmE R
oLl Il

Processor A Processor B Processor C

Secure?

I Hardware Designher’s Problem @

Program A Program B Program C

?
l SECUI’E’?/Secure' Secure?

Hardware designers need to design
processors for arbitrary programs.

I Example: Termination Time Vulnerability

e How to fix it?
Make the computation time
def check password(input): independent from the secret

for i in range(0,128):
if (input [i] != password[i]):
return ("error");

What do we mean by
“independent”? Let’s
be a bit more rigorous.

return (“success”);

Non-Interference Example

ngh root

‘ & password, etc.
2=

Low: public data,
website content

* Intuitively: not affecting

* Any sequence of low inputs will produce the same low outputs, regardless
of what the high level inputs are.

* Example: a password box cocssccendl

I Non-Interference: A Formal Definition

* The definition of noninterference for a deterministic program P

Vv M1,M2,P

M1, =M2, A (MLP)->"M1" A (M2,P)->" M2

— M].L —_ MZL’

Non-Interference for Side Channels

* The definition of noninterference for a deterministic program P

Vv M1,M2,P

03)*

01
M1, =M2, A (MLP) >*M1" A (M2P) M2’

= 01=02

What should be included in the observation trace?

Instruction completion time
Addresses issued to the memory systems (for both data and instruction)

I Understand the Property

v M1,M2, P

01* ! 02* !
M1, =M2, A (M1,P) =-*M1'" A (M2,P) -* M2

= 01=02

Consider input as part of M

def check password(input):

for i in range(0,128):
if (input [i] == password[i]):
return ("error");

return (“success”);

* Whatis M ?
* What is M ?
* WhatisO?

I Constant-Time Programming

Think about whether the statement below is true or false.

* For any public inputs, secret values, and machines, a program always takes
the same amount of time to execute.

* For any public inputs, secret values, a program always takes the same amount
of time when executing on the same machine.

* For any secret values, a program always takes the same amount of time for
the same public input when executing on the same machine.

* For any secret values, a program always takes the same amount of time for
the same input when executing on the same machine, and this holds for
arbitrary public inputs.

12

Data-oblivious/Constant-time programming

* How to deal with conditional branches/jumps?

* How to deal with memory accesses?

* How to deal with arithmetic operations: division, shift/rotation,

multiplication?

For details on real-world constant-time crypto, check this out:
https://www.bearssl.org/constanttime.html

Your Code

Compiler

Hardware

13

def check password(input):

for i in range(0,128):

if (input [i] != password[i]):

return ("error");

return (“success”);

def check password(input):

dontmatch = false;

for i in range(0,128):

if (input [i] != password[i]):

dontmatch = true;

return dontmatch;

14

def check_password(input): def check password(input):

dontmatch = false; dontmatch = false;
for i in range(0,128): for i in range(0,128):
if (input [i] != password[i]): dontmatch |= (input [i] != password[i])

dontmatch = true; ‘

return dontmatch;

return dontmatch;

15

I Real-world Crypto Code

From libsodium cryptographic library: What do we assume
about the hardware
here?

for (i = @; 1 < n; i++)
d |= x[i] ~ y[i];
return (1 & ((d - 1) >> 8)) - 1;

Compare two buffers x and y, if match, return 0, otherwise, return -1.

Examples from Cauligi et al. FaCT: A DSL for Timing-Sensitive Computation. PLDI’19

16

I Another Example

From the “donna” Curve25519 implementation

Eor (i =0; i< 5; ++1)
if (swap) {
tmp = a[i];
ali] = b[i];
b[i] = tmp;
}

=

for (i =
const limb x
a[i] "= x;
b[i] "= X;

O; 1 < 5; ++1) {

swap & (a[i] ~ b[i]);

swap is a mask, either O or OxFFFFFFFF

17

Eliminate Secret-dependent Branches

* Be a master of bitmask operations

* An instruction: cmov_

* Check the state of one or more of the status flags in the EFLAGS
register (cmovz: moves when ZF=1)

* Perform a move operation if the flags are in a specified state

* Otherwise, a move is not performed (as if a NOP) and execution
continues with the instruction following the cmov instruction

18

Conditional Branches

* Original program

if (secret) x = e

* Use bitmask
X = (-secret & e) | (secret - 1) & x

* Use cmov
test secret, secret // set ZF=1 if zero
cmovz r2, rl1 // r2 for x, rl for e

What do we assume
about the hardware
here?

(Hint: there are two.)

19

More Conditional Branches

if (secret) .
res = f1(); Potential problems:

else What if we have nested branches?
res = f2();

* What if when secret==0, f1is not

4

executable, e.g., causing page fault or divide by
rl « f1();

r2 « f2(); zero?
mov r3, rl

test secret, secret What if f1 or ¥2 needs to write to memory,

cmovz r3, r2 perform 10, make system calls?
// res in r3

20

Data-oblivious/Constant-time programming

* How to deal with conditional branches/jumps?
 How to deal with memory accesses?

* How to deal with arithmetic operations: division, shift/rotation,
multiplication?

21

I Memory Accesses

a = buffer[secret]

4

for (i=0; i<size; i++)
{
tmp = buffer[i];
xor secret, I //set ZF
cmovz a, tmp

e Performance overhead.

* Techniques such as ORAM can reduce
the overhead when the buffer is large

22

An Optimization

* Proposal: reduce the redundant accesses by only accessing one byte

in each cache line.

for (i=0; i<size; i++)

{
tmp = buffer[i];
Xor secret, 1
cmovz a, tmp

offset = secret % 64;

for (i=0; i<size; i+=64)

{
index = 1 + offset;
tmp = buffer|index];
xor secret, 1ndex
cmovz a, tmp

} What do we

assume about the
hardware here?

23

I OpenSSL Patches Against Timing Channel

offset 0 1 2 63 offset 0

1 2
e TRl - EE Line' M01 R Mol
Line 1 Mal6s] | Mijoo| [RECERRNN M,(127) Line:1 MATl N Mol

Line 2 ... BN Line 2

Line 3 eee M, |63] Line 3

Line 4 M,|65] | M,|66] M, [127] Line 4

Line 5 SO 1, 191] Line 5
.

cee Mi2)
cee Ml3)

M, 4]
“ee M:15)
) Ml6)
e Ml7)

eese M, |8]

ROTR O M. 128] | M1129) M, 1130) BEETEIEE M., [191] (RUER SRR M,[191] | M, [191] INMGHOT] SuutE T M. 191

.
.
-

.
.
.
-
-
. . e

Conventional Layout Scatter Layout
Vulnerable to traditional cache attacks |? to mitigate cache attacks

Vulnerable to L1 bank conflict attacks

Yarom et al. CacheBleed: A Timing Attack on OpenSSL Constant Time RSA.
https://faculty.cc.gatech.edu/~genkin/cachebleed/index.html

Data-oblivious/Constant-time programming

* How to deal with conditional branches/jumps?
* How to deal with memory accesses?

* How to deal with arithmetic operations: division, shift/rotation,
multiplication?

25

Arithmetic Operations

Latency of Square Root Instruction

Subnormal floating point numbers for Different Types of Inputs

160 55
sign exponent (8 bits) fraction (23 bits)
| |]
ojlojif{1|1|1|1|o|o]O|1|0|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O 120
31 30 23 22 (bit index)
3 > 20x
o 80
O slower
40
11 7 7 7
0

Normal NaN Zero Infinity Subnormal

Measured on an Intel Sandy Bridge processor.

Andrysco et al; On Subnormal Floating Point and Abnormal Timing; S&P’15 e

The Problem and A Solution

A*B

A*B
C*D C*D
(intended After (intended P*Q
operation) (intended transformation operation) (intended
w)) operation) |) (dummy) operation)
E [next instr.] E - g operation) E
' [next instr.]
[next instr.] [next instr.]
(a) Original (b) Transformed
(non-secure) code

(secure) code

Rane et al. Secure, Precise, and Fast Floating-Point Operations on x86 Processors. USENIX’16

P*Q

(dummy

operation)

27

Single Instruction Multiple Data (SIMD)

Vector code

LI VLR, 64 //length
LV V1, R1 // vec 1
LV V2, R2 // vec 2
ADDV.D V3, V1, V2
SV V3, R3

Example: 4 pipelined functional units

A[24] B[24]
A[20] B[20]
A[16] B[16]
A[12] B[12]

v

v
/

qB]/f

-

Cl4]

/

-

v

C[0]

I

A[25]
A[21]
A[17]
A[13]

v

B[25] A[26]
B[21] A[22]
B[17] A[18]
B[13] A[14]

B[26] A[27]
B[22] A[23]
B[18] A[19]
B[14] A[15]

B[27]
B[23]
B[19]
B[15]

v v
/

v v
/

v
/

cw]/f

CHO]T

cu1]f

< \

< \

-

qB]/

C[6] /

C[7] /

-

-

-

L I

C[1]

L I

C[2]

v

I

C[3]

28

Make Floating-Point Constant Time

What do we
assume about the

?
hardware here: Parameters for Selected

the actual subnormal
computation numbers

Hardware Assumption: ' / Voo / Vo /

1. The selected subnormal number | T | T | T
takes the maximum length = = o

2. SIMD returns only if the slowest /¢ /¢ /¢
lane finishes i T T

29

How shall we proceed?

* The key problem:

* No explicitly SW-HW contract for timing

* SW developers derive hardware assumptions from existing attacks and
impose implicit assumptions on the hardware.

* Some incoming efforts:
 ARM Data Independent Timing (DIT)
* Intel Data Operand Independent Timing (DOIT)
ARM DIT: https://developer.arm.com/documentation/ddi0601/2020-12/AArch64-Registers/DIT--Data-Independent-Timing

Intel DOIT: https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
operand-independent-timing-isa-guidance.htm]

30

So far, we have not discussed
how to deal with speculation...

/

ey

o’

What’s Next?

e Mitigations of transient execution attacks
* By Yuheng Yang
e Fancy interactive simulator to visualize transient execution

* Physical attacks
e By Joseph Ravichandran
* Three in-class real-time demos of physical attacks

 Embedded system attack CTF (recitation)
* Another CTF, prize for winners

32

	Default Section
	Slide 1: Software-Hardware Contract for Side Channel Defenses

	The Problem + Motivation
	Slide 2: Attack Examples
	Slide 3: Who to blame? Who to fix the problem?
	Slide 4: These Attacks Break SW-HW Contract
	Slide 5: Software Developer's Problem
	Slide 6: Hardware Designer’s Problem

	Non-interfernece Security Property
	Slide 7: Example: Termination Time Vulnerability
	Slide 8: Non-Interference Example
	Slide 9: Non-Interference: A Formal Definition
	Slide 10: Non-Interference for Side Channels
	Slide 11: Understand the Property
	Slide 12: Constant-Time Programming

	Constant Time Programming
	Slide 13: Data-oblivious/Constant-time programming
	Slide 14
	Slide 15
	Slide 16: Real-world Crypto Code
	Slide 17: Another Example
	Slide 18: Eliminate Secret-dependent Branches
	Slide 19: Conditional Branches
	Slide 20: More Conditional Branches

	handle memory accesses
	Slide 21: Data-oblivious/Constant-time programming
	Slide 22: Memory Accesses
	Slide 23: An Optimization
	Slide 24: OpenSSL Patches Against Timing Channel

	handle non-constant-time floating-point operations
	Slide 25: Data-oblivious/Constant-time programming
	Slide 26: Arithmetic Operations
	Slide 27: The Problem and A Solution
	Slide 28: Single Instruction Multiple Data (SIMD)
	Slide 29: Make Floating-Point Constant Time

	Constant-time ISA
	Slide 30: How shall we proceed?
	Slide 31: So far, we have not discussed how to deal with speculation…
	Slide 32: What’s Next?

