
More Side Channel Defenses:
A Cat-and-Mouse Game

Yuheng Yang
Spring 2025

Based on slides from Prof. Mengjia Yan

Recall Spectre v2 (BTB Injection)

2

PC

k

valid target

ValidEntry PC
predicted
target PC

match

=

; Attacker code

Train_jump:

 jmp Train_target

 …

; ----CONTEXT SWITCH---

; Victim code

Victim_jump:

jmp rax

…

Train_target:

 secret = array1[x]

 y = array2[secret*4096]

 …

Train_jump Train_target1

Victim_jump

Branch Target Buffer (BTB)

Deployed Hardware Fixes: eIBRS

3

valid target

ValidEntry PC
predicted
target PC

match

=

Train_jump Train_target1

Branch Target Buffer (BTB)

ID

K/U

eIBRS stands for Enhanced Indirect Branch Restricted
Speculation => Isolate BTB entries across privilege
levels.

match

=

Intel. Indirect Branch Restricted Speculation. https://www.intel.com/content/www/us/en/developer/articles/technical/software-
security-guidance/technical-documentation/indirect-branch-restricted-speculation.html

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html

Examine the Security Property

What do we mean by isolation?

• Property #1:
• Kernelspace indirect branches do not

use branch target inserted by
userspace code.

• Property #2 (non-interference):
• Userspace code does not interfere

with Kernelspace indirect branch
predictions.

4

valid target

ValidEntry PC
predicted
target PC

match

=

Train_jump Train_target1

Branch Target Buffer (BTB)

ID

K/U

Does eIBRS achieve
property #2? If not,
counterexamples?

Same-mode misprediction

match

=

Train_jump

Surprise 1: How Does BTB Actually Work?

• BHB
• History information of previous jump

instruction, including jump sources and
targets

• Why put BHB into hash?
• E.g., System calls share a single entry point,

but will jump to many handler functions

5

valid target

ValidEntry PC
predicted
target PC

match

=

Train_jump Train_target1

Branch Target Buffer (BTB)

ID

K/U

k

PC

Branch
Source

BHB (branch
history buffer)

hash

match

=

Hash 2 mem_alloc1K

Hash 1 io_write1K

PC

Branch History Injection

6

valid target

ValidEntry PC
predicted
target PC

match

=

Train_jump Train_target1

Branch Target Buffer (BTB)

ID

K/U

k

Branch
Source

BHB (branch
history buffer)

hash

Look at the property again:
• Property #2 (non-interference):
• Userspace code does not

interfere with Kernelspace
indirect branch prediction.

Hash 2 mem_alloc1K

Hash 1 io_write1K

Barberis et al. Branch History Injection: On the Effectiveness of Hardware Mitigations Against
Cross-Privilege Spectre-v2 Attacks. USENIX’22 https://www.vusec.net/projects/bhi-spectre-bhb/

https://www.vusec.net/projects/bhi-spectre-bhb/

Surprise 2: Consequences due to Retpoline

7

Before
retpoline

jmp *%rax

After
retpoline

call set_up_target (1)

capture_spec: (4)
pause

 lfence
jmp capture_spec

set_up_target:
 mov %rax, (%rsp) (2)
 ret (3)

Google. Retpoline: a software construct for preventing branch-
target-injection https://support.google.com/faqs/answer/7625886

Perfect victim branch
for BTB attack

https://support.google.com/faqs/answer/7625886

Summary: The Cat-and-Mouse Game

8

Retpoline eIBRS

Why you write bad code in Linux
kernel for Retpoline?You said eIBRS can

“Isolate”!

Spectre v2 (BTB Injection)

eIBRS

Consequences due to Retpoline

Branch History Injection

Why hardware designers fail to make eIBRS secure?

Solution to the Fight

• Goal: communicate security property achieved by hardware defenses
• The bad example: eIBRS -> unclear what exactly “isolation” mean…

• Alternative approaches:
• Approach 1: Show SW people all the HW implementation details

• Approach 2: define new SW-HW contracts

9

SW-HW Contracts for
Secure Speculation

Contract #1: Make Speculation Invisible

• Idea: make speculative executed instructions’ microarchitecture
effects invisible by the attacker
• Examine program examples

11

sec = ld x
dummy = ld sec

if (false)
 ……

if (false)
 sec = ld x
 dummy = ld sec

sec = ld x

if (false)
 dummy = ld sec

Secure if using
invisible speculation?

Do they follow
constant-time programming?

Speculative Non-interference
• Some notations

• 𝑃: a deterministic program
• 𝑀!"#: public memory and inputs
• 𝑀$%& : secret memory and inputs
• 𝑂: microarchitecture observation (traces)

• Property:
• if the SW does not leak under the constant-time programming model
• then the HW should ensure no more secrets leaked under speculation

12

∀	 𝑃,𝑀!"#, 𝑀$%&, 𝑀′$%&,
IF 𝑂$%'(𝑃,𝑀!"#, 𝑀$%&) = 𝑂$%'(𝑃,𝑀!"#, 𝑀′$%&)
THEN 𝑂$!%&(𝑃,𝑀!"#, 𝑀$%&) = 𝑂$!%&(𝑃,𝑀!"#, 𝑀′$%&)

Execute program sequentially,
monitor memory addresses.

Execute program speculatively,
monitor memory addresses.

Hardware-Software Contracts for Secure Speculation; Guarnieri et al; S&P’19

Is Speculative Non-interference Achieved?

13

We prepared 3 out-of-order processors in our Visualized Simulator

On L1 miss, wait 3 cycles
in MSHR

L1 can cache all 4 entries
Hit takes 1 cycle

You provide a program with:
• 4 types of instructions: ALU,

Branch, Load, NOP
• 8 registers: r0-r7

• r0 is constant 0
• r7 is also named as rSec

ROB has infinite entries

ALU has 3 ports,
operating in parallel

Memory has 4 entries

FIFO

(Jupyter Notebook link: https://mybinder.org/v2/gh/yuhengy/SHD-SpectreDemo/HEAD?urlpath=%2Fdoc%2Ftree%2F2-attackProcessors.ipynb)

https://mybinder.org/v2/gh/yuhengy/SHD-SpectreDemo/HEAD?urlpath=%2Fdoc%2Ftree%2F2-attackProcessors.ipynb

Defense #1: InvisiSpec

15

Invisible Speculation

Core

L1

Rest of Memory System

Invisible
Buffer

Txif (false)
 dummy = ld sec //Tx

InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy; Yan et al; MICRO’18

Core

L1

Rest of Memory System

Insecure Baseline

Tx

Defense #2: GhostMinion
#1: Invisible Speculation
#2: Prioritize Older Instructions through Timestamps

17

y = …… //delay

ld y //Rx

if (false)

 ld sec //Tx

speculative
interference

attack

Core

L1

Rest of Memory System

Invisible
Buffer

MSHR

Timestamp
(based on decode time)

0

1

2

3

Tx
3

Tx
3

Rx
1

Rx
1

GhostMinion: A Strictness-Ordered Cache System for Spectre Mitigation; Ainsworth; MICRO’21

Summary: The Cat-and-Mouse Game

19

2018 Spectre

Speculative interference attack2020

2019 InvisiSpec
Delay-on-Miss …

2021 GhostMinion

New variant of speculative interference attack2023
Need tools for automatically
discovering vulnerabilities

More Contracts

Software sandboxing

Contract #2: Relax the Security Property

21

sec = ld x
dummy = ld sec

if (false)
 ……

if (false)
sec = ld x

 dummy = ld sec

sec = ld x

if (false)
 dummy = ld sec

Spectre v1

Secure if using
invisible speculation?

Secure if only protecting
speculatively loaded data?

• Idea: only protect speculatively loaded data

SW needs to follow
constant-time programming

STT and NDA Designs

• Draw on the board

22

Speculative Taint Tracking (STT): A Comprehensive Protection for Speculatively Accessed Data; Jiyong Yu, Mengjia Yan, et al; MICRO, 2019
NDA: Preventing Speculative Execution Attacks at Their Source; Ofir Weisse, et al; MICRO, 2019

Understand the Property/Contract

23

∀	 𝑃,𝑀!"#, 𝑀$%&, 𝑀′$%&,
IF 𝑂$%'(𝑃,𝑀!"#, 𝑀$%&) = 𝑂$%'(𝑃,𝑀!"#, 𝑀′$%&)
THEN 𝑂$!%&(𝑃,𝑀!"#, 𝑀$%&) = 𝑂$!%&(𝑃,𝑀!"#, 𝑀′$%&)

Execute program sequentially,
monitor memory addresses.

Execute program speculatively,
monitor memory addresses.

Speculative non-interference: HW that can protect constant-time programs.

Can also be used to describe the case for protecting software sandboxing…

Monitor architecture registers

∀	 𝑃,𝑀!"#, 𝑀$%&, 𝑀′$%&,
IF 𝑂$%'(𝑃,𝑀!"#, 𝑀$%&) = 𝑂$%'(𝑃,𝑀!"#, 𝑀′$%&)
THEN 𝑂$!%&(𝑃,𝑀!"#, 𝑀$%&) = 𝑂$!%&(𝑃,𝑀!"#, 𝑀′$%&)

Summary of SW-HW Contracts

24

Describe what SW needs to achieve

Describe what HW needs to achieve for
only the SW that satisfies the IF statement

• The payoff: we can check security properties for SW and
HW independently
• Ongoing research: How to check and design according to

these properties?

