
Hardware Security Module

Mengjia Yan

Spring 2025



Secure Processors/HSM

Introduction to Security for Computer Architecture Students.  Adam Hastings, Mohammed Tarek, Simha Sethumadhavan. 
https://www.cs.columbia.edu/~simha/ch1_supplement.pdf 2



Security Context #1

• Problems:
• Running random applications together with security-sensitive applications

• Software can be buggy (or sometimes malicious)
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Isolation
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Process 1 Process 2

OS/Hypervisor
enforced isolation

Can we do better than software-based isolation?



Physical Isolation
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Secure Co-Processors

• Before IBM 4758 (1999): 
• Crypto accelerators (AES, RSA, etc.)

• Store crypto keys inside the accelerator

• Want to run more applications on the co-processor

• IBM 4758 (1999) -- 4765 (2012)
• Programmable secure co-processor

• Idea: create a virtual locker room
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Secure Co-Processors
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Normal
Processor

Secure
Processor

Narrow interface, only interact with 
external worlds via APIs 
(keys do not leave the co-processor)

General-purpose processor, rather 
than ASIC, with isolated DRAM.

Hardware lock, resilient against 
physical attacks to modify firmware



Secure Co-Processors
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Normal
Processor

Secure
Processor

• Before IBM 4758 (1999): 
• Crypto accelerators (AES, RSA, etc.)

• Store crypto keys inside the accelerator

• Want to run more applications on the co-processor

• IBM 4758 (1999) -- 4765 (2012)
• Programmable secure co-processor

• Idea: create a virtual locker room

• Problem? 

• The SWOFTWARE! Bad programmability.

• Need to find a middle ground: run selected 
applications that offer strong security functionality



Trusted Platform Module (TPM)

• “Commoditized IBM 4758”: Standard LPC 
interface attaches to commodity motherboards
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https://scotthelme.co.uk/upgrading-my-pc-with-a-tpm/



Apple Secure Enclave

• Advantage: one company controls both the hardware and the software

• Apple secure enclave runs a customized formally verified micro-kernel OS
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• Only run secure enclave 
functionality, no user code

• Block vulnerabilities due to software 
bugs (running L4 microkernel)

• Block uarch side channels

From Apple Platform Security (Page 5-96)

Shared 
DRAM? 

Encrypt enclave data and 
only decrypt at the memory 
protection engine

https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf


Make Physical Isolation More Flexible?
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Normal
Processor

Secure
Processor A Processor can switch between 

Normal and Secure Modes



The Trends (isolation with some sharing?)
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Guest OS

App

Hypervisor

SMM

Guest OS

Ring 3

Ring 0

Ring -1

Ring -2

Hardware

Enclave

Intel SGX model
ARM TrustZone
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Fixed Design (Static) Flexible Design (Dynamic)

Security? Usability?



Security Context #2

Lost your device?

• Data leakage => confidentiality

• Rootkits => integrity
15



Security Property and Crypto Primitives

• Confidentiality
• Symmetric

• Asymmetric

• Integrity

• Freshness
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Symmetric Cryptography 

• One-time-pad (OTP)

Encryption:
ciphertext = key ⨁ plaintext

Decryption:
plaintext = key ⨁ ciphertext

How about encrypting arbitrary length message? Any problems? 
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Block ciphers (e.g., DES, AES)

• Divide data in blocks and encrypt/decrypt each block

• Block ciphers are constructed using one-way function (see 6.1600)

ECB IS NOT
RECOMMENDED
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Other Block cipher Modes

IV can be public, but need to ensure to not reuse IV for the same key.

Use cases: file/disk encryption and memory encryption.
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Use Correct Crypto Primitives

• Ciphertext Side Channels on AMD SEV

• SEV’s memory encryption engine uses an XOR-Encrypt-XOR (XEX) 
mode -> deterministic encryption during the lifetime of a VM
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Li et al, CIPHERLEAKS: Breaking Constant-time Cryptography on AMD SEV via the Ciphertext Side Channel, USENIX’21
Li et al, A Systematic Look at Ciphertext Side Channels on AMD SEV-SNP, S&P’22



Encrypt using Short Passcode

• How many attempts do we need to brute-
force 6-digit passcode?

• How to mitigate brute-force?

• How to deal with attacks who can copy 
the data across devices and brute-force in 
parallel?
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A unique ID (UID) root cryptographic key.
• Unique to each device
• Randomly generated
• Fused into the SoC at manufacturing time
• Not visible outside the device
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Bind Crypto Keys to Device

User data encryption keys

Passcode + UID -> passcode entropy

Brute-force has to be performed on the 
device under attack 

Combine with other mitigations:
• Escalating time delays
• Erase data when exceeding attempt count



Integrity (MAC/Signature)

• One-way hash
• Practically infeasible to invert, and difficult to find collision

• Avalanche effect
• “Bob Smith got an A+ in ELE386 in Spring 2005”→ 01eace851b72386c46d 
• “Bob Smith got an B+ in ELE386 in Spring 2005”→ 936f8991c111f2cefaw 

• When message is long
• Divide message into blocks, and keep extending the hash by adding previous hash

Message (long)
Hash value (length 

depends on algorithm)

Use as fingerprints

Hash(m) = h
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Boot Process (UEFI) Root of trust

Always measure before executing …

ME 

(management 
engine)

Processor Chip (socket)

core

L1/L2

core

L1/L2

LLC

…

Memory (DRAM)

Non-volatile
storage device
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Secure Boot using TPM

Each step, TPM compares to expected values 
locally or submitted to a remote attestor.

TPM + firmware

Boot Loader

OS kernel

1. Measure
 (hash)

2. Report (extend)

3. load

PCR: platform configuration register 25



Security Problems of Using TPM

• Assume the first-stage bootloader is 
securely embedded in motherboard

• Not easy to use with frequent 
software/kernel update

• Time to check, time to use

• TPM Reset attacks
• exploiting software vulnerabilities and using 

software to report false hash values

Han et al. A Bad Dream: Subverting Trusted Platform Module While You Are Sleeping. Usenix 
Security’18 Wojtczuk  et al. Attacking Intel TXT® via SINIT code execution hijacking. 2011

Root of trust

CPU
TPM
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Security Context #3

27

a) A remote server wants to trust an 
end-user, e.g., when joining a 
company’s highly-secure network.

b) A device wants to update/install an 
new version of OS/software approved 
by the vendor

-> Authentication and establishing trust



Asymmetric Cryptography (e.g., RSA) 

• A pair of keys:
• Private key (Kprivate – kept as secret)

• Public key (Kpublic – safe to release publicly)

• Computation:
• Sign(plaintext, Kprivate) = signature

• Verify(plaintext, signature, Kpublic) = T/F

• How to announce and obtain the public key?

Mail box is public;
Box key is private

28



Public Key Infrastructures (PKIs)

• Analogy: public key is like a 
government-issued ID, need to be 
validated by an authority.

• Bob has a private key Kprivate  and 
wants to claim he corresponds to a 
public key Kpublic 

Alice Bob

Certificate
Authority

What is Bob’s 
public key?
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Public Key Infrastructures (PKIs)

• Analogy: public key is like a 
government-issued ID, need to be 
validated by an authority.

• Bob has a private key Kprivate  and 
wants to claim he corresponds to a 
public key Kpublic 

• Establish a chain of trust

• Real-world use cases: identify website, 
identify hardware chips/processors

Bob

Certificate
Authority

Alice

Bob’s public key 
is Kpublic Sign using the

CA’s private key
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Platform Attestation

Verifier
(e.g., Companies, Chip 

vendor themselves)

Measurement 
+ nonce

sign

RKpri RKpub

Root Key

Chip Manufactory
(e.g., Intel, Apple, Google)

Works as Certificate Agent

AKpub

sign

Attestation 
Identity Key

Processor Chip
(w/ BIOS, OS, Apps)

AKpri
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OpenTitan

from https://www.hotchips.org/hc30/1conf/1.14_Google_Titan_GoogleFinalTitanHotChips2018.pdf
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Secure Boot

OS Provider
(e.g., companies)

Kernel + version + 
Measurement

sign

RKpri RKpub

Root Key

Chip Manufactory
(e.g., Intel, Apple, Google)

Works as Certificate Agent

Kpri

sign

Certificate
Key

Processor Chip
(w/ BIOS, OS, Apps)

Kpub
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Secure Boot

Similar to TPM but with more constraints

• Each step is signed by Apple to prevent 
loading non-Apple systems

• Verify more components, including 
operating system, kernel extensions, etc.

• Keep track of version number to prevent 
rolling back to older/vulnerable versions
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Summary

What Can Hardware Security Modules Offer?

• Physical isolation

• Bind data and applications with the hardware device

• Establish root of trust

• More efficient

Challenges: software support. Programmability.
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Next:
IoT & Embedded Security

(Also with fancy demos 
)
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