Hardware Security Module

Mengjia Yan
Spring 2025

@y

MIT

H

-

1969
Tengx Suppors full

wirtual mermory

1967

Multics OF infroduces
profection fings and invents
e nobon of privileges

1961 I—

Burroughs BS000
ntroduces a tag bit o
distinguish control words
frorm numénc woeds

1964
I SysteemB60 uses 4-bit
MOy Prodecion kiys
1969
Burraugha BES00 sxtencs
18G5 10 bi thres bits kangs

1970

o0 Meamony ACCaLSes

—

IBM Sysiemy3T0 suppons
a lock & ey mechansm

1980 1981
Barkeley RISC Standsed MIPS

project BEQING propect beging

1979
DEC allows usir and
kermel code 1o shane
same a00ress Space N
RSTSE 08

I Secure Processors/HSM

2005 2012
Irital @nd AMD add hardware Inbel ackis SLppon for SMAP
| Supenasor Moo Access Frevention)

Suppon for v m*ah.zatk:-n
2002 20Mm

IBM ThinkPad T30 adhenes
o TPM (Trusted Platiorm
Mociule) standard, ghang
learchwars Suppon for

Irded adds suppor lor SMEP
(Supervisor Mode Execution Prevention)

I

At station And kiy SMOrEHE

1997
IBM AT58 introchecirs rardeap
gacufity moduse jof

Inbel BOBE irroduced.
Includes notion of
privilege rings

1981

Infel APK 432 nrotuces
hardware and MICrocooe Support
for objeci-orienied programming
and capabiity-based sodessing

L cryplographe; computalion

2010

Imedl adds hardwara-

|
2000
AMD adds support for NX “no-
execubd” Dit in xBE-64 E5A

2002

ARM inroduces TrustZone, a Trusted Exacution
Envieonmaent (TEE) inténdad ior isolated sxeculion
and DFEM [Dagital Rights Managament) support

accelerated supoon

2015

Inted introduces MIPX [Memary
[Protection) ISA sxiensions o
Support runlime pointer Bounds
checking
2016
AMD provades Rardwana
acceleraled vinual machine
ancryplion with SEV | Secure
Encryplion Virtualirason)

2016
L AMD introduces SME |Secure
Memory Encryption),
hasdwirn accolersled support
for sncrypt Syslem maEmory

for AES encryption

2012

Intel sdds support
tar random niamiber
ganaration with the

—

Figure 1: Sixty vears of hardware support for security

2015

Irdid inbroduces SGX (Softwane
Guard) [BA axtensions, which
gine users the ability 10 execube
code in secune “enclaves”

RDARAND inssruchon

Introduction to Security for Computer Architecture Students. Adam Hastings, Mohammed Tarek, Simha Sethumadhavan.
https://www.cs.columbia.edu/~simha/ch1_supplement.pdf

I Security Context #1

163, 181
[[11]1611M/99
00:43:30

SR E RN N R EXE F S EC ERE PP NS R ESR(ATRKES IRGIERY X

:— C Q YOU have tOO many tabS open : /usr/lib/systemd/systemd --switched-r]

/usr/lib/systemd/systemd-journald
/usr/shin/lvmetad -f
/usr/lib/systemd/systemd-udevd

/sbin/auditd -n

/shin/audispd
/usr/shin/sedispatch
/usr/shin/alsactl -s -n 19 -c -E ALSA

/usr/libexec/accounts-daemon

/usr/shin/rsyslogd -n

/sbin/rngd -f

/bin/dbus-daemon --system --address=s|
F9 F10

* Problems:
* Running random applications together with security-sensitive applications
e Software can be buggy (or sometimes malicious)

Isolation

Process 1 Process 2

OS/Hypervisor
enforced isolation

Can we do better than software-based isolation?

I Physical Isolation

TIRRN
[| [|
[| [|
[| [|
= :<::j>
[| [|
TIRRN S
ecure
Normal Processor

Processor

I Secure Co-Processors

e Before IBM 4758 (1999):
e Crypto accelerators (AES, RSA, etc.)

‘51111 * Store crypto keys inside the accelerator
- - * Want to run more applications on the co-processor
- :<:> * IBM 4758 (1999) -- 4765 (2012)
- - * Programmable secure co-processor
TIRIN . : :
| Secure |dea: create a virtual locker room
Norma Processor

Processor

Secure Co-Processors

General-purpose processor, rather Hardware lock, resilient against
than ASIC, with isolated DRAM. physical attacks to modify firmware
Physigal 486
LLLLL oty | procemor | || B | e
(1L 0] and RAM s
- response Sl
| |
L - -
- - - i ! 0
- - Hardware locks
= () = -
[| | |
- (11l l
I I I I I I Routing Data_
Secure control [*]' “ondrd. Random | | eartime
F?:Os » Modular generator clock
Normal Processor math
P ' (Physical security boundary
rO C e SS O r — PCl bus interface J
Host PCl bus I

Narrow interface, only interact with
external worlds via APIs
(keys do not leave the co-processor) /

I Secure Co-Processors

e Before IBM 4758 (1999):

e Crypto accelerators (AES, RSA, etc.)
“SI8101 * Store crypto keys inside the accelerator
* Want to run more applications on the co-processor

=) * IBM 4758 (1999) -- 4765 (2012)

* Programmable secure co-processor

sl Secure * |dea: create a virtual locker room
. 2
Normal Processor Problem?:)
Processor * The SWOFTWARE! Bad programmability.

Need to find a middle ground: run selected
applications that offer strong security functionality

8

I Trusted Platform Module (TPM)

 “Commoditized IBM 4758”: Standard LPC
interface attaches to commodity motherboards

Platform Attestation
Non-Volatile
Configuration Identity

Storage .
Register (PCR) Key (AIK)

Random

Communications

Number

Engine Generation

Generator

Trusted Platform Module (TPM)

Tamper-Protected Packaging

https://scotthelme.co.uk/upgrading-my-pc-with-a-tom/

I Apple Secure Enclave

* Advantage: one company controls both the hardware and the software
* Apple secure enclave runs a customized formally verified micro-kernel OS

Low-power video
playback

High-performance

High-bandwidth GPU

caches

Cryptography

toton i M 1

High-performance
video editing

Thunderbolt / USB 4
controller

Machine learning High-quality image Low-power High-performance High-efficiency audio
accelerators signal processor design NVMe storage processor

10

NAND flash storage DRAM 00 O Shared Encrypt enclave data and
I DRAM? (D only decrypt at the memory
Mrmor',;mlmh‘l protection engine

NAND flash controller M

Apphcation Processor t
AES engine -

M
- >

TRNG

socur Enciv * Only run secure enclave
Secwokrciove 4= Mooy Botectin functionality, no user code
* Block vulnerabilities due to software
bugs (running L4 microkernel)
* Block uarch side channels

System on chip

Secure Nonvolatile Storage

https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

Make Physical Isolation More Flexible?

Ol
j

131301 TFIPT
Secure

Normal Processor A Processor can switch between
Processor Normal and Secure Modes

12

The Trends (isolation with some sharing?)

App
Enclave
A \
Guest OS
Guest OS

CPU Core

A

Normal World (REE) Secure World (TEE)

H>

Co-processor

Registers

TZASC

DRAM

TZMA

SRAM

TZPC

Ring -1 Hypervisor \ \
) \ \
Hardware]

—

AXI-
APB

f:

RNG || Peripherals

GIC

R ———; R A 2
il (>

. ! user mode:

| . |

i| user mode: App || TEE App

: ' kernel mod -

' < ; ernel mode: @

: kernel mode: OS : TEE-kernel <:> @
hyp mode:] :
Hypervisor

- y & Y, <:>
smc l lsmc
monitor mode: Secure Monitor Mode <r‘:,‘>

Intel SGX model

ARM TrustZone

[] Secure world
[Normal world

13

Security?

LS

Usability?

Fixed Design (St@

Flexible Design (Dynamic)

14

Security Context #2

Lost your device?

* Data leakage => confidentiality
* Rootkits => integrity

15

Security Property and Crypto Primitives

* Confidentiality
* Symmetric R

* Asymmetric
ﬂ< g
B

Alice

* Integrity

* Freshness Mallory

16

Symmetric Cryptography

°pad (OTP)

Encryption:
ciphertext = key @ plaintext

Secret Y

A4Sh*L@9.
T6=#/>B#1
R06/J2.>1L

1PRL39P20 Decryption:
plaintext = key @ ciphertext

Plain Text Cipher Text Plain Text

How about encrypting arbitrary length message? Any problems?

17

Block ciphers (e.g., DES, AES)

* Divide data in blocks and encrypt/decrypt each block
 Block ciphers are constructed using one-way function (see 6.1600)

ECB IS NOT
RECOMMENDED

Plaintext Plaintext Plaintext
LOITTTTITTITTT] LLTTTTITTIITIT1Td LLITTIITTITTT]
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
LOITTTITTITTT] LOTTTTITTIITITId LLITTIITTITTT]
Ciphertext Ciphertext Ciphertext
Electronic Codebook {ECB:' mode encryptinn Original image Encrypted using ECB mode Mods other tha ECB result in

pseudo-randomness

18

Other Block cipher Modes

Nonce

c59

Key ——

bcf35..
LITITITITTITITTIT]

|

block cipher
encryption

Counter
00000000 c59

Key —

Nonce

bcf35..
OTTTTITITTT1T1]

|

block cipher
encryption

Counter
00000001 c59

Key —

Nonce

bcf35..
OTTTTITITTT1T1]

|

block cipher
encryption

Counter
00000002

Plaintext ———
OTTTTITITTT1T1]

Plaintext ——
[TIITTITIITI1]

Plaintext ——
[TIITTITIITI1]

Plaintext Plaintext Plaintext
[TITTTTTTITTT] [IITTITTTTITITIT] CLITTTTTITTITT]
Initialization Vector (1V)
OIIIITIIITIT] ——
Key block cpher Key block C|p_her Key block upher
encryption encryption encryption
[TTTITTTTTTTT] [ITTTITTITTTTIT] OTTITITITTT1]
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

CITTITITTITTT
Ciphertext

OTTTITTTTITT1
Ciphertext

Counter (CTR) mode encryption

OTTTITTTTITT1
Ciphertext

IV can be public, but need to ensure to not reuse IV for the same key.

Use cases: file/disk encryption and memory encryption.

19

Use Correct Crypto Primitives

* Ciphertext Side Channels on AMD SEV

* SEV’'s memory encryption engine uses an XOR-Encrypt-XOR (XEX)
mode -> deterministic encryption during the lifetime of a VM

128-bit Encryption Blocks [unchangea
Changeable
* [changeatic
(a) - Secret I -
(b) i Secret | -
— : - (c) - I Secret nonce; |
Original image Encrypted using ECB mode Modes other than

pseudo-randomness

Li et al, CIPHERLEAKS: Breaking Constant-time Cryptography on AMD SEV via the Ciphertext Side Channel, USENIX’21
Li et al, A Systematic Look at Ciphertext Side Channels on AMD SEV-SNB, S&P’22
20

Encrypt using Short Passcode

* How many attempts do we need to brute-
force 6-digit passcode?

* How to mitigate brute-force?

* How to deal with attacks who can copy
the data across devices and brute-force in

parallel?

21

Bind Crypto Keys to Device

@fA unique ID (UID) root cryptographic key.

Unique to each device
 Randomly generated
e Fused into the SoC at manufacturing time
* Not visible outside the device

o Passcode + UID -> passcode entropy
SE: Brute-force has to be performed on the
System on chip device under attack

Combine with other mitigations:

 Escalating time delays

* Erase data when exceeding attempt count
22

User data encryption keys

Integrity (MAC/Signature)

Hash(m) = h

/ \ Use as fingerprints

Hash value (length
depends on algorithm)

Message (long)

* One-way hash
* Practically infeasible to invert, and difficult to find collision

e Avalanche effect
* “Bob Smith got an A+ in ELE386 in Spring 2005”—> ©leace851b72386c46d
* “Bob Smith got an B+ in ELE386 in Spring 2005”—> 936f8991c111f2cefaw

* When message is long
* Divide message into blocks, and keep extending the hash by adding previous hash

23

Boo

t Process (UEFI)

Security (SEC) <
7 microcode
MEASUIES = - - oo oo oo oo
_» y firmware
Pre-EFI Initialization (PEI) -
—
measures \
Kb
Driver eXecution Environment (DXE)
o~
measures
k» Y
Boot Device Selection (BDS)
o
MEeASUreS =--=-=============== - eoooo—---ooo oo
NG y bootloader
Transient System Load (TSL)
]
MEASUMNES = - - m oo e o e e e e e e e e
N, y 0S

Run Time (RT)

Always measure before executing ...

Root of trust

Cache-as-RAM

DRAM Initialized

Processor Chip (socket)

core core
L1/12 L1/12
LLC
Memory (DRAM)
ME
Non-volatile (management
engine)

storage device

24

Secure Boot using TPM

0 (zero)

TPM MR
after reboot

Boot Loader

v
SHA-1()
sent to TPM
v v OS Kernel
SHA-1() 7
TPM MR when SHA-1()
boot loader T
executes sent to TPM
i v Kernel module
SHA-1() v
TPM MR when SHMI()
OS kernel sent to TPM
executes l v
SHA-1()
TPM MR when

PCR: platform configuration register

Kernel Module executes

TPM + firmware 2. Report (extend)

l 3. load

1. Measure
(hash)

Boot Loader

l

OS kernel

!

Each step, TPM compares to expected values
locally or submitted to a remote attestor.

25

Security Problems of Using TPM

Root of trust

e Assume the first-stage bootloader is T e i B rocas
securely embedded in motherboard T et stz (E) e orAM itaized
]
¢ NOt ea Sy to use With frequent B Driver eXecution invironment (DXE)
]
software/kernel update meagures l
]] - Boot Device Selection (BDS)
 Time to check, time to use T —— i
p— Transient System Load (TSL)
* TPM Reset attacks T S 5
.. ere . . . Run Time (RT)
* exploiting software vulnerabilities and using
software to report false hash values
T

Han et al. A Bad Dream: Subverting Trusted Platform Module While You Are Sleeping. Usenix TITIT TPM
Security’18 Wojtczuk et al. Attacking Intel TXT® via SINIT code execution hijacking. 2011 CPU 26

Security Context #3

a) A remote server wants to trust an

D end-user, e.g., when joining a
AR company’s highly-secure network.
D - b) A device wants to update/install an
Clients y new version of OS/software approved
i Server by the vendor
T

-> Authentication and establishing trust

27

Asymmetric Cryptography (e.g., RSA)

* A pair of keys:
* Private key (K, ;ate — kept as secret)
* Public key (K ;,1;. — safe to release publicly) r

* Computation:
* Sign(plaintext, K, .ivate) = Signature
* Verify(plaintext, signature, K_.;.) = T/F

Mail box is public;
Box key is private

* How to announce and obtain the public key?

28

Public Key Infrastructures (PKis)

* Analogy: public key is like a

government-issued ID, need to be Certificate

validated by an authority. Authority
* Bob has a private key K, ; ;e and Whiﬁ.‘SEOES
. UDIIC Key':
wants to claim he corresponds to a P ’

public key K11 c

29

Public Key Infrastructures (PKis)

* Analogy: public key is like a
government-issued ID, need to be
validated by an authority.

* Bob has a private key K ; ;2o and
wants to claim he corresponds to a

public key K 1,1 ¢

e Establish a chain of trust

* Real-world use cases: identify website,
identify hardware chips/processors

[O O O)
(829] Certificate

(°°‘L) Authority

|] & |]
a
Bob’s public key

IS Koup1ic

Sign using the
CA’s private key

O O
) i
Alice Bob

30

I Platform Attestation

Works as Certificate Agent

-

\

Root Key

Processor Chip
(w/ BIOS,|OS, Apps)

\ 4

sign

(e.g., Intel, Apple, Google)

RKPri ub
Chip Manufactory \ e

/

A:Kpri

Measurement

+ nonce

sign

‘ Attestation

4

> - Identity Key
ub

Verifier
(e.g., Companies, Chip
vendor themselves)
31

OpenTitan

PCH / BMC

Chipset

Storage and
networking
subsystem

Reset and
power control

Memory
subsystem

from https://www.hotchips.org/hc30/1conf/1.14_Google Titan GoogleFinalTitanHotChips2018.pdf

32

I Secure Boot

Works as Certificate Agent

-

\

Root Key

Processor Chip
(w/ BIOS,|OS, Apps)

\ 4

(e.g., Intel, Apple, Google)

RKPri ub
Chip Manufactory \ e

/

Kpub

Kernel + version +

Measurement

sign

. ‘ Certificate
sign

4

~

Key
ah ~-

OS Provider
(e.g., companies)

33

I Secure Boot

Similar to TPM but with more constraints

* Each step is signed by Apple to prevent
loading non-Apple systems

e Verify more components, including
operating system, kernel extensions, etc.

* Keep track of version number to prevent
rolling back to older/vulnerable versions

Boot ROM validates LLB signature

l

LLB validates system-paired
firmware signatures

l Secure Enclave Boot
Secure Enclave ROM fetches
signed — LLB validates LocalPolicy signature = <@ LocalPolicy
LocalPolicy nonces from Secure
1 Storage Component

LLB evaluates iBoot stage 2 signature
according to LocalPolicy

1

iBoot stage 2 validates macOS-paired
firmware, Boot Kernel Collection,
Auxilary Kernel Collection (if applicable),
system trust cache, and signed system
volume signatures, according
to LocalPolicy

l

macOS

34

Summary

What Can Hardware Security Modules Offer?

* Physical isolation

* Bind data and applications with the hardware device
* Establish root of trust

* More efficient

Challenges: software support. Programmability.

35

Next:
loT & Embedded Security

(Also with fancy demos

KSAO%)

(W E

-

	Default Section
	Slide 1: Hardware Security Module
	Slide 2: Secure Processors/HSM

	#1: Physical Isolation
	Slide 3: Security Context #1
	Slide 4: Isolation
	Slide 5: Physical Isolation
	Slide 6: Secure Co-Processors
	Slide 7: Secure Co-Processors
	Slide 8: Secure Co-Processors
	Slide 9: Trusted Platform Module (TPM)
	Slide 10: Apple Secure Enclave
	Slide 11
	Slide 12: Make Physical Isolation More Flexible?
	Slide 13: The Trends (isolation with some sharing?)
	Slide 14

	#2: Bind data/application to hardware
	Slide 15: Security Context #2
	Slide 16: Security Property and Crypto Primitives
	Slide 17: Symmetric Cryptography
	Slide 18: Block ciphers (e.g., DES, AES)
	Slide 19: Other Block cipher Modes
	Slide 20: Use Correct Crypto Primitives
	Slide 21: Encrypt using Short Passcode
	Slide 22: Bind Crypto Keys to Device

	#2-2: Secure Boot
	Slide 23: Integrity (MAC/Signature)
	Slide 24: Boot Process (UEFI)
	Slide 25: Secure Boot using TPM
	Slide 26: Security Problems of Using TPM

	#3 Authentication
	Slide 27: Security Context #3
	Slide 28: Asymmetric Cryptography (e.g., RSA)
	Slide 29: Public Key Infrastructures (PKIs)
	Slide 30: Public Key Infrastructures (PKIs)
	Slide 31: Platform Attestation
	Slide 32: OpenTitan
	Slide 33: Secure Boot
	Slide 34: Secure Boot

	End
	Slide 35: Summary
	Slide 36: Next: IoT & Embedded Security (Also with fancy demos 🔨🎩🤩✨)

