
Hardware Security Module

Mengjia Yan

Spring 2025

Secure Processors/HSM

Introduction to Security for Computer Architecture Students. Adam Hastings, Mohammed Tarek, Simha Sethumadhavan.
https://www.cs.columbia.edu/~simha/ch1_supplement.pdf 2

Security Context #1

• Problems:
• Running random applications together with security-sensitive applications

• Software can be buggy (or sometimes malicious)

3

Isolation

4

Process 1 Process 2

OS/Hypervisor
enforced isolation

Can we do better than software-based isolation?

Physical Isolation

5

Normal
Processor

Secure
Processor

Secure Co-Processors

• Before IBM 4758 (1999):
• Crypto accelerators (AES, RSA, etc.)

• Store crypto keys inside the accelerator

• Want to run more applications on the co-processor

• IBM 4758 (1999) -- 4765 (2012)
• Programmable secure co-processor

• Idea: create a virtual locker room

6

Normal
Processor

Secure
Processor

Secure Co-Processors

7

Normal
Processor

Secure
Processor

Narrow interface, only interact with
external worlds via APIs
(keys do not leave the co-processor)

General-purpose processor, rather
than ASIC, with isolated DRAM.

Hardware lock, resilient against
physical attacks to modify firmware

Secure Co-Processors

8

Normal
Processor

Secure
Processor

• Before IBM 4758 (1999):
• Crypto accelerators (AES, RSA, etc.)

• Store crypto keys inside the accelerator

• Want to run more applications on the co-processor

• IBM 4758 (1999) -- 4765 (2012)
• Programmable secure co-processor

• Idea: create a virtual locker room

• Problem?

• The SWOFTWARE! Bad programmability.

• Need to find a middle ground: run selected
applications that offer strong security functionality

Trusted Platform Module (TPM)

• “Commoditized IBM 4758”: Standard LPC
interface attaches to commodity motherboards

9

https://scotthelme.co.uk/upgrading-my-pc-with-a-tpm/

Apple Secure Enclave

• Advantage: one company controls both the hardware and the software

• Apple secure enclave runs a customized formally verified micro-kernel OS

10

11

• Only run secure enclave
functionality, no user code

• Block vulnerabilities due to software
bugs (running L4 microkernel)

• Block uarch side channels

From Apple Platform Security (Page 5-96)

Shared
DRAM?

Encrypt enclave data and
only decrypt at the memory
protection engine

https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

Make Physical Isolation More Flexible?

12

Normal
Processor

Secure
Processor A Processor can switch between

Normal and Secure Modes

The Trends (isolation with some sharing?)

13

Guest OS

App

Hypervisor

SMM

Guest OS

Ring 3

Ring 0

Ring -1

Ring -2

Hardware

Enclave

Intel SGX model
ARM TrustZone

14

Fixed Design (Static) Flexible Design (Dynamic)

Security? Usability?

Security Context #2

Lost your device?

• Data leakage => confidentiality

• Rootkits => integrity
15

Security Property and Crypto Primitives

• Confidentiality
• Symmetric

• Asymmetric

• Integrity

• Freshness

16

Symmetric Cryptography

• One-time-pad (OTP)

Encryption:
ciphertext = key ⨁ plaintext

Decryption:
plaintext = key ⨁ ciphertext

How about encrypting arbitrary length message? Any problems?

17

Block ciphers (e.g., DES, AES)

• Divide data in blocks and encrypt/decrypt each block

• Block ciphers are constructed using one-way function (see 6.1600)

ECB IS NOT
RECOMMENDED

18

Other Block cipher Modes

IV can be public, but need to ensure to not reuse IV for the same key.

Use cases: file/disk encryption and memory encryption.

19

Use Correct Crypto Primitives

• Ciphertext Side Channels on AMD SEV

• SEV’s memory encryption engine uses an XOR-Encrypt-XOR (XEX)
mode -> deterministic encryption during the lifetime of a VM

20

Li et al, CIPHERLEAKS: Breaking Constant-time Cryptography on AMD SEV via the Ciphertext Side Channel, USENIX’21
Li et al, A Systematic Look at Ciphertext Side Channels on AMD SEV-SNP, S&P’22

Encrypt using Short Passcode

• How many attempts do we need to brute-
force 6-digit passcode?

• How to mitigate brute-force?

• How to deal with attacks who can copy
the data across devices and brute-force in
parallel?

21

A unique ID (UID) root cryptographic key.
• Unique to each device
• Randomly generated
• Fused into the SoC at manufacturing time
• Not visible outside the device

22

Bind Crypto Keys to Device

User data encryption keys

Passcode + UID -> passcode entropy

Brute-force has to be performed on the
device under attack

Combine with other mitigations:
• Escalating time delays
• Erase data when exceeding attempt count

Integrity (MAC/Signature)

• One-way hash
• Practically infeasible to invert, and difficult to find collision

• Avalanche effect
• “Bob Smith got an A+ in ELE386 in Spring 2005”→ 01eace851b72386c46d
• “Bob Smith got an B+ in ELE386 in Spring 2005”→ 936f8991c111f2cefaw

• When message is long
• Divide message into blocks, and keep extending the hash by adding previous hash

Message (long)
Hash value (length

depends on algorithm)

Use as fingerprints

Hash(m) = h

23

Boot Process (UEFI) Root of trust

Always measure before executing …

ME

(management
engine)

Processor Chip (socket)

core

L1/L2

core

L1/L2

LLC

…

Memory (DRAM)

Non-volatile
storage device

24

Secure Boot using TPM

Each step, TPM compares to expected values
locally or submitted to a remote attestor.

TPM + firmware

Boot Loader

OS kernel

1. Measure
 (hash)

2. Report (extend)

3. load

PCR: platform configuration register 25

Security Problems of Using TPM

• Assume the first-stage bootloader is
securely embedded in motherboard

• Not easy to use with frequent
software/kernel update

• Time to check, time to use

• TPM Reset attacks
• exploiting software vulnerabilities and using

software to report false hash values

Han et al. A Bad Dream: Subverting Trusted Platform Module While You Are Sleeping. Usenix
Security’18 Wojtczuk et al. Attacking Intel TXT® via SINIT code execution hijacking. 2011

Root of trust

CPU
TPM

26

Security Context #3

27

a) A remote server wants to trust an
end-user, e.g., when joining a
company’s highly-secure network.

b) A device wants to update/install an
new version of OS/software approved
by the vendor

-> Authentication and establishing trust

Asymmetric Cryptography (e.g., RSA)

• A pair of keys:
• Private key (Kprivate – kept as secret)

• Public key (Kpublic – safe to release publicly)

• Computation:
• Sign(plaintext, Kprivate) = signature

• Verify(plaintext, signature, Kpublic) = T/F

• How to announce and obtain the public key?

Mail box is public;
Box key is private

28

Public Key Infrastructures (PKIs)

• Analogy: public key is like a
government-issued ID, need to be
validated by an authority.

• Bob has a private key Kprivate and
wants to claim he corresponds to a
public key Kpublic

Alice Bob

Certificate
Authority

What is Bob’s
public key?

29

Public Key Infrastructures (PKIs)

• Analogy: public key is like a
government-issued ID, need to be
validated by an authority.

• Bob has a private key Kprivate and
wants to claim he corresponds to a
public key Kpublic

• Establish a chain of trust

• Real-world use cases: identify website,
identify hardware chips/processors

Bob

Certificate
Authority

Alice

Bob’s public key
is Kpublic Sign using the

CA’s private key

30

Platform Attestation

Verifier
(e.g., Companies, Chip

vendor themselves)

Measurement
+ nonce

sign

RKpri RKpub

Root Key

Chip Manufactory
(e.g., Intel, Apple, Google)

Works as Certificate Agent

AKpub

sign

Attestation
Identity Key

Processor Chip
(w/ BIOS, OS, Apps)

AKpri

31

OpenTitan

from https://www.hotchips.org/hc30/1conf/1.14_Google_Titan_GoogleFinalTitanHotChips2018.pdf

32

Secure Boot

OS Provider
(e.g., companies)

Kernel + version +
Measurement

sign

RKpri RKpub

Root Key

Chip Manufactory
(e.g., Intel, Apple, Google)

Works as Certificate Agent

Kpri

sign

Certificate
Key

Processor Chip
(w/ BIOS, OS, Apps)

Kpub

33

Secure Boot

Similar to TPM but with more constraints

• Each step is signed by Apple to prevent
loading non-Apple systems

• Verify more components, including
operating system, kernel extensions, etc.

• Keep track of version number to prevent
rolling back to older/vulnerable versions

34

Summary

What Can Hardware Security Modules Offer?

• Physical isolation

• Bind data and applications with the hardware device

• Establish root of trust

• More efficient

Challenges: software support. Programmability.

35

Next:
IoT & Embedded Security

(Also with fancy demos
)

	Default Section
	Slide 1: Hardware Security Module
	Slide 2: Secure Processors/HSM

	#1: Physical Isolation
	Slide 3: Security Context #1
	Slide 4: Isolation
	Slide 5: Physical Isolation
	Slide 6: Secure Co-Processors
	Slide 7: Secure Co-Processors
	Slide 8: Secure Co-Processors
	Slide 9: Trusted Platform Module (TPM)
	Slide 10: Apple Secure Enclave
	Slide 11
	Slide 12: Make Physical Isolation More Flexible?
	Slide 13: The Trends (isolation with some sharing?)
	Slide 14

	#2: Bind data/application to hardware
	Slide 15: Security Context #2
	Slide 16: Security Property and Crypto Primitives
	Slide 17: Symmetric Cryptography
	Slide 18: Block ciphers (e.g., DES, AES)
	Slide 19: Other Block cipher Modes
	Slide 20: Use Correct Crypto Primitives
	Slide 21: Encrypt using Short Passcode
	Slide 22: Bind Crypto Keys to Device

	#2-2: Secure Boot
	Slide 23: Integrity (MAC/Signature)
	Slide 24: Boot Process (UEFI)
	Slide 25: Secure Boot using TPM
	Slide 26: Security Problems of Using TPM

	#3 Authentication
	Slide 27: Security Context #3
	Slide 28: Asymmetric Cryptography (e.g., RSA)
	Slide 29: Public Key Infrastructures (PKIs)
	Slide 30: Public Key Infrastructures (PKIs)
	Slide 31: Platform Attestation
	Slide 32: OpenTitan
	Slide 33: Secure Boot
	Slide 34: Secure Boot

	End
	Slide 35: Summary
	Slide 36: Next: IoT & Embedded Security (Also with fancy demos 🔨🎩🤩✨)

