6.595 Secure Hardware Design

Mengjia Yan Spring 2025

Course Staff

Instructor: Mengjia Yan

- mengjia@csail.mit.edu
- Office: 32-G840
- Office Hours: Friday 2:30-3:30pm

Willian Liu

Shixin Song

Mario Mrowka

Selena Qiao

Extra office hours before Lab Due

Dates: see Piazza announcement

No office hours in Week 1.

Email: <u>shd-staff@mit.edu</u>

Office: 32-G786

Office Hours (32-G7 Lobby)

- Mondays 11am-1pm (Will)
- Tuesdays 3pm-5pm (Shixin)
- Thursdays 3pm-5pm (Mario), 5pm-7pm (Selena)

Today's Agenda

1. Course Overview: What can you learn from this course?

2. Course Logistics: assignments, labs, grading, etc.

3. Enrollment Cap Selection Process

4. Review basic architecture materials (from 6.1910 [6.004])

Course Overview

Hardware Attacks on The Spotlight

It is not a bug!

The attacks target the key micro-architecture mechanism of processors: speculative execution.

Mitigation Choices

- A) A comprehensive mitigation that can block all the attacks in a specific category
- B) An ad-hoc mitigation that can block some but not all the attacks in the category

Which one do you choose?

But what if?

A) is 15% slower than B) and also consumes 1.5x more energy than B)

What mitigation has been deployed?

	Softw	are Security Guida	ince		
nformation is designed	and recomme	s experts looking to understand pl endations for building more secure	solutions.	ties and ass	eis use within
Overview Adviso	ry Guidance Best Practic	es Disclosure Documentation	Feature Docume	intation	More informati
Advisory Guid	lanca				
Overviews and one-mail	an it.e	advisories along with recommend	ed mitigations for a	effected env	ironments.
Find industry offer	ge ocacriptories or secondy	automics and g when recommende	Construction of the s		The of the states as
Find industry-wide sev	erity ratings in the Nationa	Vumerability Database.			
Critical	🕕 High	() Medium	(Low	
Critical	🕕 High	() Medium	(Ucw Cow	
Critical	🕕 High	() Medium	(D Low	
Critical	🚺 High	() Medium	(U Low	
Critical	() High	() Medium	(D row	
Cvss	🚺 High	CVE	54	Low Severity	Disclosure
Critical Cvss	High Title	CVE	54	D Low Severity	Disclosure Date
Critical CVSS	Title	CVE-2022-21233	SA INTEL-SA-	Cow Severity Medium	Disclosure Date 2022-08-09
Critical Cv55 0 6.0 Staie Data R	Title	CVE CVE-2022-21233	SA INTEL-SA- 00657	D Low Severity Medium	Disclosure Date 2022-08-09

https://www.intel.com/content/www/us/en/developer/topictechnology/software-security-guidance/advisory-guidance.html

Hardware Security Features

- What do hardware security features offer?
- Better performance? More secure due to physical shields?
- Pros and cons?

What programmers see?

Demo: Abstraction Hides Details

Consider two programs...

Hardware Attack Examples

- Hardware security attacks usually break abstractions
- Example #1: Side Channel breaks the ISA abstraction
- Examples #2: Rowhammer breaks the digital abstraction

Course Logistics: Lectures, Paper Discussion, Grading

Three Websites

- Course website: <u>https://shd.mit.edu/2025/</u>
 - All the course policy, grading details, lecture slides, lab handouts, etc.
- Piazza: Announcements and Q&A

Average Response Time:

17 min

 Gradescope and Github Classroom: Submit your lab assignments and homework

Now let's navigate the course website

Hardware Security: The Evil and The Good

• Attack modern processors

• Know how to design defenses better

Preview of Lab Assignments

- 0. C Crash Lab
- 1. Website Fingerprinting Attack
- 2. Cache Attack
- 3. Speculative Execution Attack
- 4. Rowhammer
- 5. ASLR Bypassing
- 6a. Hardware Fuzzing
- 6b. Formal Verification for Hardware

Preview of Recitation Sessions

- 1. Learn C/C++ (CTF)
- 2. Attack Platform Introduction and Cache Attacks Office Hours
- 3. Physical attacks (CTF)
- 4. RISC-V System Programming
- 5. Tool chain for hardware formal verification

Paper Discussions

- Mimic PC meetings
 - 1. Two discussion leaders: One summarizes the paper, the other points out the pros and cons of the paper
 - 2. The audience ask questions and clarifications, discussion leaders answer questions
 - 3. The whole class votes: a) best paper; b) accept; c) reject
- Paper assignment and grading details will be released in Week 3

Notes about Labs

- Difficulty level of the labs will increase compared to previous years
 - Specifically, Lab 2 and Lab4.
 - Multiple bonus components become required.
- We are employing a stricter late policy

Enrollment Cap Selection Process

- Due to hardware constraints, enrollment is capped at **96** students
- You must attend the first lecture
- Enrollment priority will be based on:
 - MIT Enrollment: All MIT students will be prioritized over cross-registrants.
 - Seniority: Graduate students first, followed by seniors, juniors, sophomores, and then freshmen.

Review Basic Architecture Concept

- ISA and Pipelined Processors
- Virtual Memory

ISA and A Pipelined Processor

inst: Add F3, r1, r2.

Software's View of the Processor

A 5-stage Pipelined Processor

Virtual Address & Address Mapping

Next: Side Chanel Overview

