Covert and Side Channels

Mengjia Yan Spring 2025

What is a side channel?

• By making *indirect* observations (the number of pizzas ordered), one is able to infer partial information

And Bomb The By Paul Gray Monday, Aug. 13, 1990	e Anchovies	6		
Like 0	in Share	Read Later		
Delivery people at various Domino's pi	izza outlets in and around Wa	ashington		
claim that they have learned to anticip	Email	Print		
or the Pentagon by the upsurge in take some 72 hours before an official annou	Share	Reprints		
runner. "Absolutely. Pentagon orders of attack; same thing happened before th	Follow @TIME			
	g around midnight. We figure	red		
he adds, "we got a lot of orders, startin	0 0 0 0 0 0 0			

What is Covert and Side Channel?

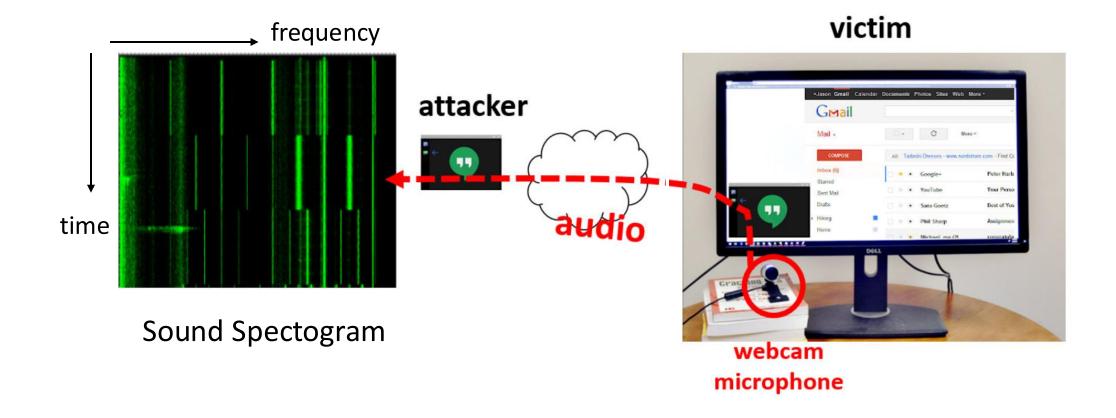
- Gather information by measuring or exploiting **indirect** effects of the system
- Covert channel:
 - **Cooperated/Intended** communication between two or more security parties
- Side channel:
 - Unintended communication between two or more security parties
- In both cases:
 - Communication does not follow the system specification
 - The communication medium is not designed to be a communication channel

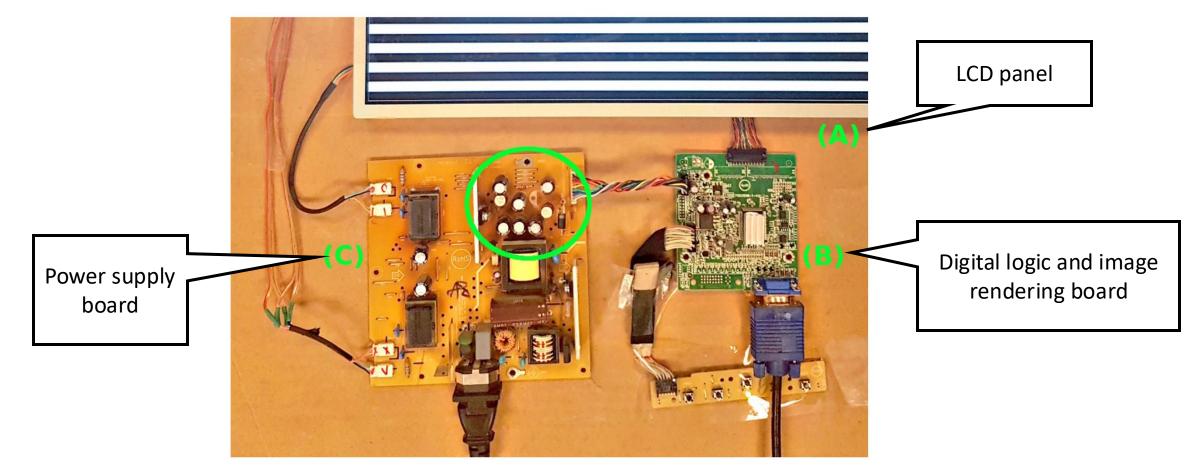
Side Channels Are Almost Everywhere

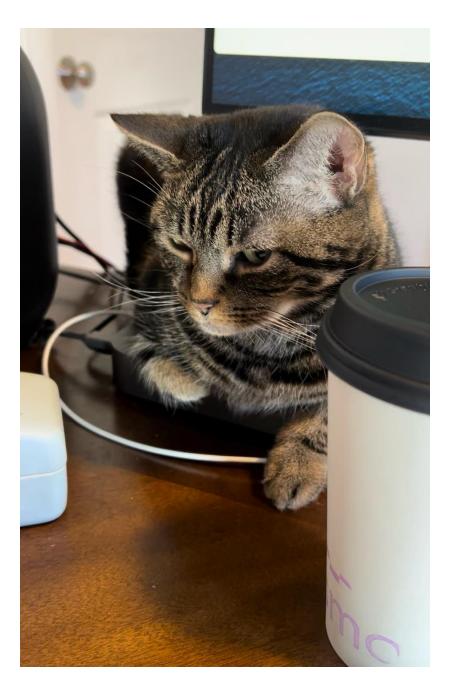
Example #1: Acoustic Side Channels

- Monitor keystroke
 - You only need: a cheap microphone + an ML model

Other sources of acoustic side channels inside a computer?


• Another example: "Hear" the screen



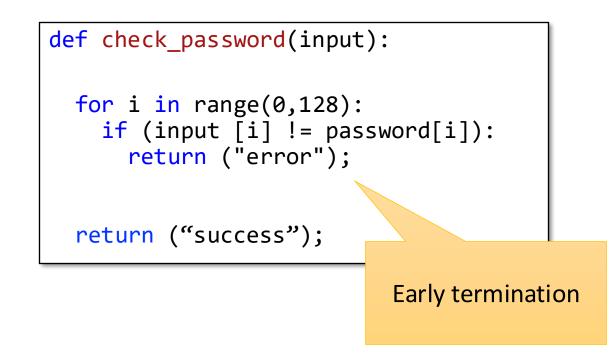

"Hear" The Screen

"Hear" The Screen

Even cats know side channels ...

Example 2: Network Side Channels

- Website Fingerprinting
 - Frequency of packets, size of packets
 - Example: iSideWith.com


	1					
	Quiz	Issues	Elections	Parties	Ideologies	Discuss
				_		A share Q
TUESDAY	OVEMBER 7,	2028				
2020	Dree	i d an ti	-10-1-			
			ial Quiz			
			ee who you should v	vote for in the 2	028 Presidential elec	ction.
				vote for in the 2	028 Presidential elec	ction.
				vote for in the 2	028 Presidential elec	ction.
Answer th		questions to s		vote for in the 2	028 Presidential elec	stion.
Answer the	e following HCARE ISS	questions to s	ee who you should v			
Answer the HEALT Shoul	e following HCARE ISS d the fe	questions to s sues	ee who you should v			tion.
Answer the HEALT Shoul incom	e following HCARE 155 d the fe te indiv	questions to s sues ederal gov riduals (N	ee who you should v			
HEALT Shoul Incom	e following HCARE ISS d the fe he indiv MORE STAT	questions to s sues ederal gov riduals (N	ee who you should v			
HEALT Shoul Incom	e following HCARE 155 d the fe te indiv	questions to s sues ederal gov riduals (N	ee who you should v			

• Network traffic contention side channel

Lescisin et. al. Tools for Active and Passive Network Side-Channel Detection for Web Applications. WOOT'18 Cai et. al. Touching from a distance: Website fingerprinting attacks and defenses. CCS'12.

Example 3: Timing Side Channel

- Password: 128 digits
- How many attempts an attacker needs to brute force a password with blind guess?
- Consider the *check_password* program on the left. Can we reduce the number of attempts? How?

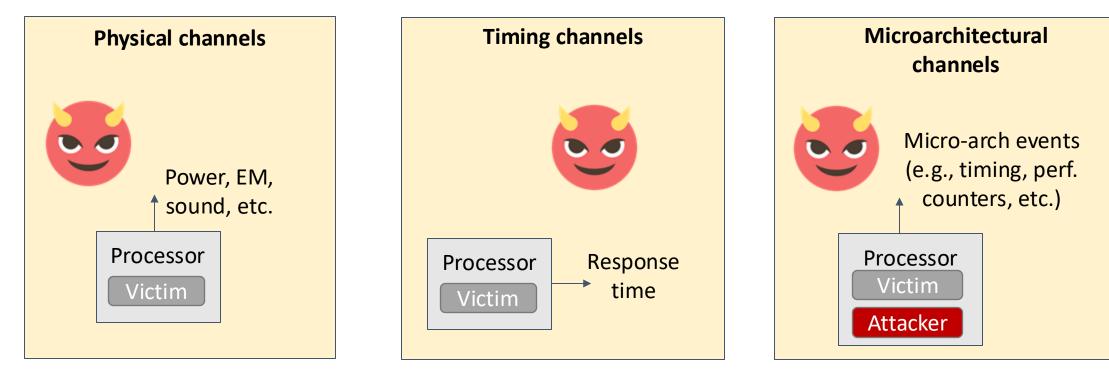
Vulnerabilities in Real-world Crypto

• Libgcrypt's Montgomery ladder scalar-by-point multiplication routine

Algorithm 3 Libgcrypt's modular reduction operation (simplified).

Input: Two integers *x* and *m*, represented as a sequence of limbs

 $x_0 \dots x_{l-1}$ and $m_0 \dots m_{k-1}$.


Output: *x* mod *m*.

- 1: **procedure** MODULAR_REDUCTION(x, m)
- 2: $l \leftarrow \text{SIZE_IN_LIMBS}(\mathbf{x})$
- 3: $k \leftarrow \text{SIZE_IN_LIMBS}(M)$

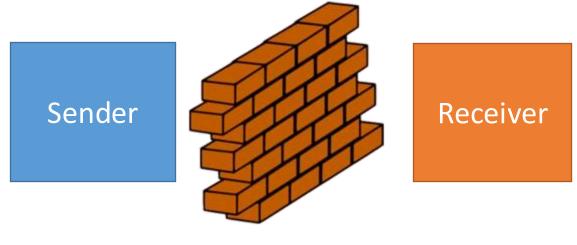
4:	if $l < k$ then						
5:	return x	▶ Early exit if x is smaller than m					
6:							
7:	$q \leftarrow (x_i \cdot 2^{64} +$						
8:	if $q(m_{k-1} \cdot 2^{128})$	$(3^{6} + m_{k-2}) > x_i \cdot 2^{128} + x_{i-1} \cdot 2^{64} + x_{i-2}$					
	then						
9:	$q \leftarrow q-1$	▹ If q is too large, adjust estimate					
10:	$x \leftarrow x - q \cdot m \cdot$	$2^{64(i-k)}$ > Subtract from x					
11:	return x	$\triangleright x$ holds the remainder					

Vulnerability exists in a real-world implementation of Curve25519.

A Rough Classification based on What Attackers Can Observe

Attacker requires measurement equipment \rightarrow physical access

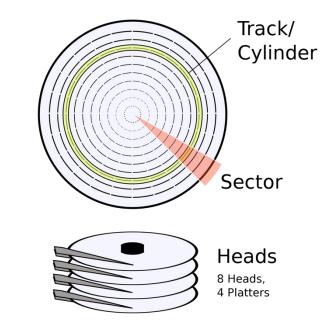
Attacker may be remote (e.g., over an internet connection)


Attacker may be remote, or be co-located

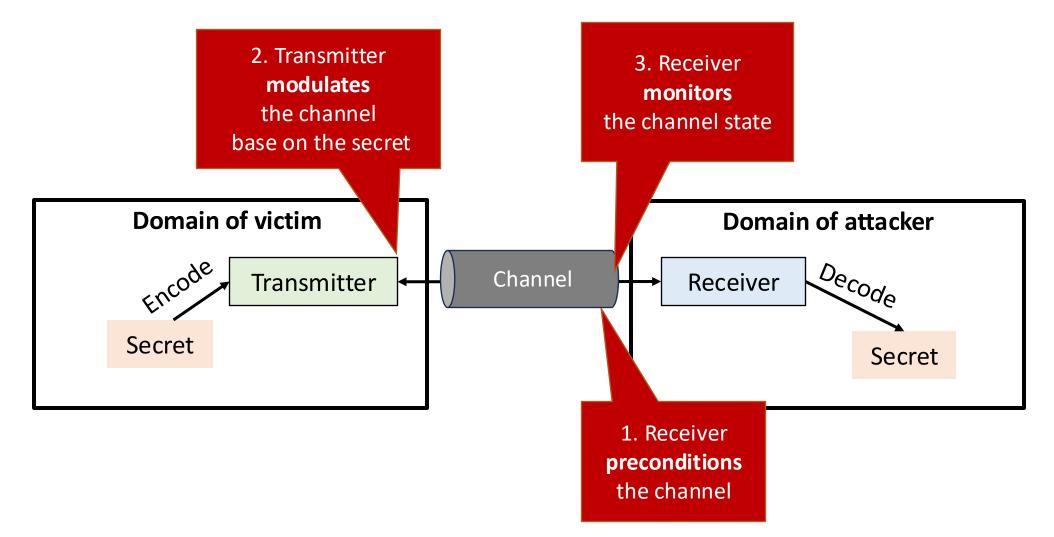
Microarchitecture (uArch) Side Channel

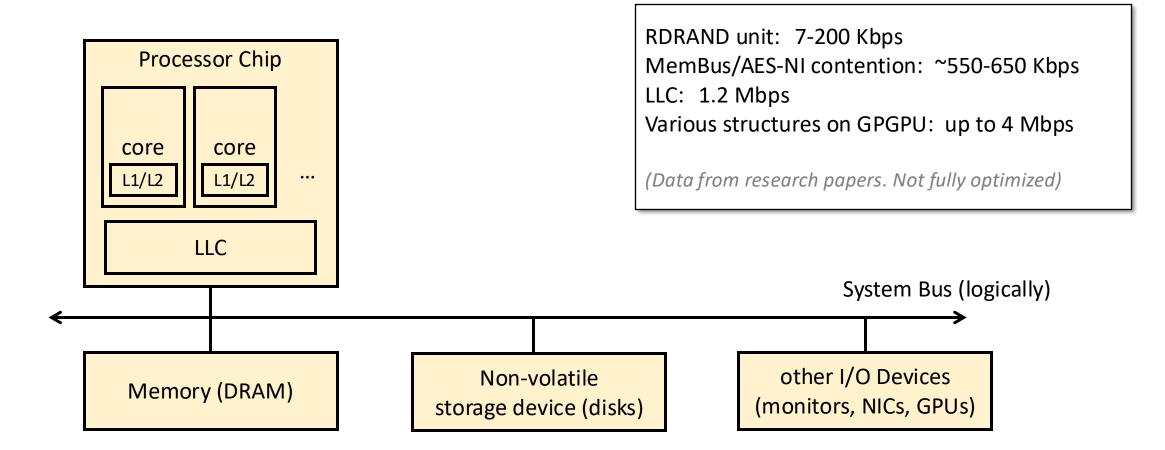
Side Channel Threat Model

OS/Hypervisor enforced isolation



An Example Attack in 1977


- Disk arm optimization
 - Execute requests by the "elevator algorithm."
- Assume attacker's capability:
 - Can issue multiple requests to any tracks
 - Can measure request latency and the order of its own requests get processed by the disk
- Let's attack



A Communication Model

uArch Attacks Generalization

Analyze A Demo

How difficult is it to figure out the **root cause** of a covert/side channel?

Next: Cache Side Channel Deep Dive

