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Leak Crypto Library #1: RSA
• Square-and-Multiply Exponentiation

• Refer to 6.1600 for details how the full  algorithm work

Input : 

base b

modulo m

exponent e = (en−1 ...e0 )2 

Output:

be mod m
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r = 1

for i = n-1 to 0 do 

 r = sqr(r) 

 r  = mod(r, m)

 if ei == 1 then 

  r = mul(r, b)

  r = mod(r, m)

 end 

end 



Leak Crypto Library #2: AES

Repeat 10, 12, 14 times 
depending on key size.
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Input : 
  Plaintext
  Secret key
  Lookup Tables 
  
Output:
  Ciphertext



Leak Crypto Library #2: AES T-Table

// s0..s3, t0..t3 are 32-bit integer

for (  ;  ;  ) { 

  t0 = Td0[(s0>>24)] ^ Td1[(s3>>16)&0xff] ^ Td2[(s2>>8)&0xff] ^ Td3[s1&0xff] ^ rk[4]; 

  t1 = Td0[(s1>>24)] ^ Td1[(s0>>16)&0xff] ^ Td2[(s3>>8)&0xff] ^ Td3[s2&0xff] ^ rk[5]; 

  t2 = Td0[(s2>>24)] ^ Td1[(s1>>16)&0xff] ^ Td2[(s0>>8)&0xff] ^ Td3[s3&0xff] ^ rk[6]; 

  t3 = Td0[(s3>>24)] ^ Td1[(s2>>16)&0xff] ^ Td2[(s1>>8)&0xff] ^ Td3[s0&0xff] ^ rk[7];

  rk += 8; 

  if (--r == 0) { 

    break;

  }

  ... 
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Observation: Secret-dependent memory accesses.

The attacker’s goal: 
Monitor access patterns at cache line granularity.



Why Cache?

• Large attack surface. Shared across cores/sockets.

• Fast. Can be used to build high-bandwidth channels

• Many states. Can encode secrets spatially to further improve bandwidth 
and precision.

• There exist many cache-like structures. The same attack concepts and 
tricks will apply.
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Attack Strategy #1: Flush+Reload

• The flush instructions allow explicit control of cache states
• In X86,   clflush vaddr 

• In ARM,  DC CIVAC vaddr

• What are these flush instructions used for except for attacks?
• For coherence, in the case when the data in the cache is inconsistent 

with the data in the DRAM. 

• 1) old time, incoherent DMA

• 2) nowadays, Non-volatile memory for crash recovery

7



Flush+Reload
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Cache

Victim Attacker
A shared cache line

Time

DRAM

Attacker:
Flush

Victim:
Access

Attacker:
Flush

Victim:
No Access

Attacker:
Reload -> 

low latency

Attacker:
Reload -> 

high latency

Something might 
seem confusing here…



Page Mapping

Virtual Address Space 
(Programmer's View)

Physical Address Space
 (limited by DRAM size)

4KB

4KB

VA

PA

Page Table
per process

Process 1

Process 2

4KB

4KB
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Transparent Page Deduplication

Virtual Address Space 
(Programmer's View)

Physical Address Space
 (limited by DRAM size)

4KB

4KB

VA

PA

Page Table
per process

Process 1

Process 2

4KB

the same 
content
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The Attack Code

  mfence

  rdtsc

  mov %eax, %edi

  mov (<vaddr>), %rsi

  mfence

  rdtsc

  sub %edi, %eax
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In x86, 8 GPR:
• rax, rbx, rcx, rdx
• rsp, rbp
• rsi, rdi
“r” means 64-bit
replacing “r” with “e” means the lower 32 bits.

rdtsc: 
• Read Time-Stamp Counter

• edx:eax := TimeStampCounter;

mfence:
• Memory Fence

• Performs a serializing operation on all memory instructions

A load operation



A Demo

Key points: 

• We are manipulating microarchitecture states.

• The processor is a blackbox with many different optimizations. With a good 
understanding of the processor, we can manipulate the microarchitecture states 
better.

• Sometimes, reverse engineering is required.
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Attack Strategy #2: ?

• Cache state manipulation instructions
• In X86,   clflush vaddr 

• In ARM,  DC CIVAC vaddr

• What if these instructions are not available in user space?
• Apple devices

• “Except ARMv8-A CPUs, ARM processors do not support a flush 
instruction”

from ARMageddon: Cache Attacks on Mobile Devices (USENIX’16)
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Attack Strategy #2: Evict+Reload
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Cache

Victim Attacker
A shared cache line

Time

DRAM

Attacker:
Access a 

large buffer
Victim:
Access

Victim:
No Access

Attacker:
Reload -> 

low latency

Attacker:
Reload -> 

high latency

Attacker:
Access a 

large buffer



Lessons Learnt So Far

So the fundamental problem: 
shared memory between 
different security domains.
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Source: https://kb.vmware.com/s/article/2080735



No more shared memory.

Can we still attack?



Attack Strategy #3: Prime+Probe
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Cache

Victim Attacker

Time

DRAM

Attacker:
Prime a 

cache set
Victim:
Access

Victim:
No Access

Attacker:
Prime a 

cache set

Sender’s line

Receiver’s line



Attack Strategy #3: Prime+Probe

18

Cache

Victim Attacker

Time

DRAM

Attacker:
Prime a 

cache set
Victim:
Access

Victim:
No Access

Attacker:
Prime a 

cache set

Sender’s line

Receiver’s line



Attack Strategy #3: Prime+Probe
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Cache

Victim Attacker

Time

DRAM

Attacker:
Prime a 

cache set
Victim:
Access

Victim:
No Access

Attacker:
Prime a 

cache set

Sender’s line

Receiver’s line

Attacker:
Probe -> 

high latency

Attacker:
Probe -> 

low latency



Analogy: Bucket/Ball
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Shared Cache

Sender Receiver

Cache Set

# ways

Sender’s address Receiver’s address

Each cache set is a bucket 
that can hold 8 ballsQuestion: Do we really know which 

address map to which cache set?



N-way Set-Associative Cache
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Tag Data Tag DataTag Data Tag Data

8
 s

e
ts

4 ways

SET

WAY

INCOMING  ADDRESS

IndexTag

Block offset



A 6.191/6.004 Quiz Question

• I have a virtual address: 0xAAAA

• The cache parameter is as below
• Cache size: 32KB

• Line size/Block size: 64B

• Associativity: 8
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Question 1:
What is the cache set index?

Question 2:
What is the next address that map to 

the same cache set as this one
but not the same cache line?



A 6.191/6.004 Quiz Question

• I have a virtual address: 0xAAAA

• The cache parameter is as below
• Cache size: 32KB --> 64KB

• Line size/Block size: 64B

• Associativity: 8

23

Question 1:
What is the cache set index?

Question 2:
What is the next address that map to 

the same cache set as this one
but not the same cache line?



Address Translation (4KB page)
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Physical Address (32bit):

Virtual Address (48bit):

48                                                        12 11                                        0

Virtual page number (VPN) 
Page offset

(12 bits)

31                                            12 11                                        0

Physical page number (PPN) 
Page offset

(12 bits)

Page 
Table Copy 

page offset



Using Caches with Virtual Memory
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Cache TLB
CPU

Main 
memory

Physically-Addressed Cache

• Avoids stale cache data after context 
switch

• SLOW: virtual→physical translation 
before every cache access

Virtually-Addressed Cache

• FAST: No virtual→physical translation 
on cache hits

• Problem: Must flush cache after 
context switch

CacheTLBCPU
Main 

memory



Best of Both Worlds (L1 Cache): 
Virtually-Indexed, Physically-Tagged Cache (VIPT)
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Cache

CPU
Main

memory

TLB

Cache index comes entirely from address 
bits in page offset – don’t need to wait 
for TLB to start cache lookup!



Using Huge Pages

• Huge page size: 2MB or 1GB
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Virtual Address :
4KB page

48                                                        12 11                                        0

Virtual page number 
Page offset

(12 bits)

48                                21 20                                                                 0

Virtual page number 
Page offset

(21 bits)

Virtual Address :
2MB page

Line offset
(6 bits)

Set Index
(8 bits)

TagCache mapping:
(256 sets)

Why system designers 
introduce huge pages?



There are still many other practical challenges.

If you tackle all of them, you can ...



Review RSA Vulnerability

• Square-and-Multiply Exponentiation

Input : 

  base b

  modulo m

  exponent e = (en−1 ...e0 )2 

Output:

 be mod m
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r = 1

for i = n-1 to 0 do 

 r = sqr(r) 

 r  = mod(r, m)

 if ei == 1 then 

  r = mul(r, b)

  r = mod(r, m)

 end 

end 



The Multiply Function
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Raw Trace
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Access latencies measured in the probe operation in Prime+Probe on a cache line 

inside the multiplication function. 

A sequence of “01010111011001” can be deduced as part of the exponent.



Takeaways 

• Practical challenges in implementing a reliable cache attack
• Page sharing
• Noise due to prefetchers
• Uncertainty due to page mapping
• Replacement policy
• Etc.

• Hardware and software optimizations make attacks easier
• Transparent page sharing
• Copy-on-write
• Huge pages
• Virtually-indexed and physically-tagged caches
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Next:
Cache Attack Recitation 
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