Practical Cache Attacks

Mengjia Yan
Spring 2025

bl

Leak Crypto Library #1: RSA

Input :
base b
modulo m

exponente=(e,_; ...ey),

Output:
be mod m

Square-and-Multiply Exponentiation
Refer to 6.1600 for details how the full algorithm work

r =1

for i = n-1 to @ do
r = sqr(r)
r = mod(r, m)
if e; == 1 then
r = mul(r, b)
r = mod(r, m)
end

end

Leak Crypto Library #2: AES

Byte Sub
Input :
Plaintext .
Shift Row
Secret key
Lookup Tables
Mix Column
Output:
Ciphertext
Add
Round
Key
Repeat 10, 12, 14 times
depending on key size.

Leak Crypto Library #2: AES T-Table

// sO..

for (
to
tl
t2
t3

rk
if

s3, t0..t3 are 32-bit integer

J J

= Tdo[(s0>>24)]
= TdO[(s1>>24)]
= TdO[(s2>>24)]

TdO[(s3>>24)]

+= 8;
(-—r‘ ==
break;

) A

0) {

N

N

AN

N

Td1[(s3>>16)8&0OxFf]
Td1[(s©0>>16)8&0xff]
Td1[(s1>>16)8&0xff]
Td1[(s2>>16)80xff]

N

N

N

N

Td2[(s2>>8)8&0xff]
Td2[(s3>>8)8&0xff]
Td2[(s0>>8)8&0xff]
Td2[(s1>>8)&0xff]

N

N

AN

N

Td3[s1&0xff]
Td3[s2&0Oxff]
Td3[s3&0xff]
Td3[s0&0xff]

rk[4];
rk[5];
rk[6];
rk[7];

Observation: Secret-dependent memory accesses.

The attacker’s goal:
Monitor access patterns at cache line granularity.

Iir =

Why Cache?

* Large attack surface. Shared across cores/sockets.
e Fast. Can be used to build high-bandwidth channels

* Many states. Can encode secrets spatially to further improve bandwidth
and precision.

* There exist many cache-like structures. The same attack concepts and
tricks will apply.

I Attack Strategy #1: Flush+Reload

* The flush instructions allow explicit control of cache states

e In X86, clflush vaddr
* In ARM, DC CIVAC vaddr

* What are these flush instructions used for except for attacks?

* For coherence, in the case when the data in the cache is inconsistent
with the data in the DRAM.

* 1) old time, incoherent DMA
e 2) nowadays, Non-volatile memory for crash recovery

Flush+Reload

Victim

Something might
seem confusing here...

Attacker

Cache

. A shared cache line

DRAM

Attacker:
Attacker: Victim: Reload ->
Flush Access low latency
> Time
Attacker: Victim: Attacker:
Flush No Access Reload ->
high latency

Page Mapping

Process 1

Page Table Physical Address Space
| PEr process (limited by DRAM size)
VA
e _\N
4KB
Process 2 AKB
4KB

Virtual Address Space
(Programmer's View)

Transparent Page Deduplication

Process 1
Page Table Physical Address Space
, PEr process (limited by DRAM size)
VA
e \—\‘ﬁ\
-7 4KB
e
e
e
v e
P
e
e
e
Process 2 e
7
e
e
S L
4KB
the same
content
Virtual Address Space
(Programmer's View)

I The Attack Code

In x86, 8 GPR:

* rax, rbx, rcx, rdx
mfence * rsp, rbp

e rsi, rdi
rdtsc

r\ “r” means 64-bit

mov %eax, %edi replacing “r” with “e” means the lower 32 bits.

mov (<vaddr>), %rsi <= Aload operation

mfence
rdtsc:

rdtsc * Read Time-Stamp Counter
sub %edi. %eax * edx:eax :=TimeStampCounter;
J
mfence:
* Memory Fence
e Performs a serializing operation on all memory instructions

11

A Demo

Key points:

* We are manipulating microarchitecture states.

* The processor is a blackbox with many different optimizations. With a good
understanding of the processor, we can manipulate the microarchitecture states
better.

 Sometimes, reverse engineering is required.

12

I Attack Strategy #2: ?

e Cache state manipulation instructions

e In X86, clflush vaddr
* In ARM, DC CIVAC vaddr

 What if these instructions are not available in user space?
e Apple devices

e “Except ARMVv8-A CPUs, ARM processors do not support a flush
instruction”

from ARMageddon: Cache Attacks on Mobile Devices (USENIX’16)

13

I Attack Strategy #2: Evict+Reload

Cache

Victim

Attacker

DRAM

. A shared cache line

Attacker: Attacker:
Access a Victim: Reload ->
large buffer RS low latency
> Time
Attacker: Victim: Attacker:
Access a No Access Reload ->
large buffer high latency

14

Lessons Learnt So F

So the fundamental problem:
shared memory between
different security domains.

Source: https://kb.vmware.com/s/article/2080735

Security considerations and
disallowing inter-Virtual Machine
Transparent Page Sharing (2080735)

Last Updated: 8/25/2021 Categories: Informational Total Views: 66593

15 Language: iy o SUBSCRIBE [}

v Details

This article acknowledges the recent academic research that leverages Transparent Page
Sharing (TPS) to gain unauthorized access to data under certain highly controlled conditions
and documents VMware's precautionary measure of restricting TPS to individual virtual
machines by default in upcoming ESXi releases. At this time, VMware believes that the
published information disclosure due to TPS between virtual machines is impractical in a real
world deployment.

Published academic papers have demonstrated that by forcing a flush and reload of cache
memory, it is possible to measure memory timings to try and determine an AES encryption
key in use on another virtual machine running on the same physical processor of the host
server if Transparent Page Sharing is enabled between the two virtual machines. This
technigue works only in a highly controlled system configured in a non-standard way that
VMware believes would not be recreated in a production environment. .

Even though VMware believes information being disclosed in real world conditions is
unrealistic, out of an abundance of caution upcoming ESXi Update releases will no longer
enable TPS between Virtual Machines by default (TPS will still be utilized within individual
VMs).

No more shared memory.

Can we still attack?

I Attack Strategy #3: Prime+Probe

Cache

Attacker

DRAM

Attacker:

Prime a Victim:
cache set Access
Attacker: Victim:

Prime a No Access
cache set

17

I Attack Strategy #3: Prime+Probe

Attacker

. DRAM

Attacker:

Prime a Victim:
cache set Access
Attacker: Victim:

Prime a No Access
cache set

18

I Attack Strategy #3: Prime+Probe

Victim Attacker o,
Receiver’s line

Attacker: Attacker:

Prime a Victim: Probe ->
cache set NGRS high latency

> Time

Attacker: Victim: Attacker:

Prime a No Access Probe ->
cache set low latency

DRAM

19

I Analogy: Bucket/Ball

Sender’s address Receiver’s address

Sender Receiver

ways

Cache Set —

Shared Cache r\

Each cache set is a bucket

Question: Do we really know which that can hold 8 balls

address map to which cache set?
20

I N-way Set-Associative Cache

INCOMING ADDRESS

Block offset
7

Tag

Index

8 sets

Tag Data (Tag Data) Tag Data Tag Data
WAY
- J
\ J
|
4 ways

21

I A 6.191/6.004 Quiz Question

e | have a virtual address: OxAAAA

* The cache parameter is as below
e Cache ssize: 32KB
* Line size/Block size: 64B
* Associativity: 8

Question 1:
What is the cache set index?

Question 2:
What is the next address that map to
the same cache set as this one
but not the same cache line?

22

I A 6.191/6.004 Quiz Question

e | have a virtual address: OxAAAA

* The cache parameter is as below
* Cache size: 32KB --> 64KB
* Line size/Block size: 64B
* Associativity: 8

Question 1:
What is the cache set index?

Question 2:
What is the next address that map to
the same cache set as this one
but not the same cache line?

23

I Address Translation (4KB page)

48 12 11 0
Virtual Address (48bit): Virtual page number (VPN) Page offset
(12 bits)
\ J
Page
Table Copy
page offset
31 1 12 11 3 0
Physical Address (32bit): Physical page number (PPN) P?:{f; g;c::)a

Using Caches with Virtual Memory

Virtually-Addressed Cache

! ! l memory l

e FAST: No virtual->physical translation
on cache hits

e Problem: Must flush cache after
context switch

Physically-Addressed Cache

CPU _.: TLB | Cacfhe - Main
! ! l memory l

e Avoids stale cache data after context
switch

e SLOW: virtual>physical translation
before every cache access

25

Best of Both Worlds (L1 Cache):
Virtually-Indexed, Physically-Tagged Cache (VIPT)

—~ ' :
o= o
—] memory

Cache index comes entirely from address L { Cache
bits in page offset — don’t need to wait
for TLB to start cache lookup!

Using Huge Pages

* Huge page size: 2MB or 1GB

Virtual Address :
4KB page

Cache mapping:
(256 sets)

Virtual Address :
2MB page

Why system designers
introduce huge pages?

48 12 11 0
Virtual page number PR @iEE
Pag (12 bits)
Tag Set Index Line offset
(8 bits) (6 bits)
48 21 20 0

Virtual page number

Page offset
(21 bits)

27

There are still many other practical challenges.

If you tackle all of them, you can ...

Iir =

Review RSA Vulnerability

 Square-and-Multiply Exponentiation

Input :
base b
modulo m

exponente =(e,_; ...6;),

Output:

b€ mod m

r=1
for i = n-1 to @ do
r = sqr(r)
r = mod(r, m)
if e; == 1 then
r = mul(r, b)
r = mod(r, m)
end

end

29

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

The Multiply Function

471 mpi_limb_t
472 mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,

{

mpi_ptr_t vp, mpi_size_t vsize)

mpi_ptr_t prod_endp = prodp + usize + vsize - 1;
mpi_limb_t cy;
karatsuba_ctx ctx;

if(vsize < KARATSUBA_THRESHOLD) {
mpi_size_t 1i;
mpi_limb_t v_limb;

if('vsize)
return @;
/* Multiply by the first limb in V separately, as the result can be
* stored (not added) to PROD. We also avoid a loop for zeroing. */
v_limb = vp[0];
ifC v_1limb <= 1) {
ifC v_limb == 1)
MPN_COPY(prodp, up, usize);
else
MPN_ZERO(prodp, usize);
cy = 13
}
else
cy = mpihelp_mul_1(prodp, up, usize,

prodp[ulize] = Ccy;
prodp++;

/* For each iteration in the outer loop, multiply one limb from
* U with one 1imb from V, and add it to PROD. */
for(i = 1; 1 < vsize; i++) {
v_limb = vp[i];
ifC v_limb <= 1) §
cy = 9;
ifC v_limb == 1)
cy = mpihelp_add_n(prodp, prodp, up, usize);

else
cy = mpihelp_addmul_1(prodp, up, usize, v_limb);

prodplusize] = cy;
prodp++;

return cy,

}

memset(&ctx, @, sizeof ctx);

mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, &ctx);
mpihelp_release_karatsuba_ctx(&ctx);

return *prod_endp;

I Raw Trace

300
275 mul
i R X
X X X X X X XX
—~ 250 1 - x x X X5 »
0 X XX xp@x (X X X
kS 2 & X | R 3R X
L% 225 1 *&) %>§< f%xx %xé% :)2;?\(X X%(K X%
g 200 A % % s X
a X
0 1751 ¢ % X5 X X % XX
ot X
8 R NG e R M Mgk g OSSR
bit"O"| bit"1"
125 -
100
2400 2450 2500 2550 2600 2650 2700 2750 2800

Sample ID

Access latencies measured in the probe operation in Prime+Probe on a cache line
Inside the multiplication function.
A sequence of 01010111011001” can be deduced as part of the exponent.

Takeaways

* Practical challenges in implementing a reliable cache attack
* Page sharing
* Noise due to prefetchers

Uncertainty due to page mapping

Replacement policy

Etc.

* Hardware and software optimizations make attacks easier
* Transparent page sharing
* Copy-on-write
* Huge pages
* Virtually-indexed and physically-tagged caches

32

Next:
Cache Attack Recitation

i T H R san

	Default Section
	Slide 1: Practical Cache Attacks

	Motivation
	Slide 2: Leak Crypto Library #1: RSA
	Slide 3: Leak Crypto Library #2: AES
	Slide 4: Leak Crypto Library #2: AES T-Table
	Slide 5: Observation: Secret-dependent memory accesses. The attacker’s goal: Monitor access patterns at cache line granularity.
	Slide 6: Why Cache?

	Flush+Reload
	Slide 7: Attack Strategy #1: Flush+Reload
	Slide 8: Flush+Reload
	Slide 9: Page Mapping
	Slide 10: Transparent Page Deduplication
	Slide 11: The Attack Code
	Slide 12: A Demo

	Evict+Reload
	Slide 13: Attack Strategy #2: ?
	Slide 14: Attack Strategy #2: Evict+Reload
	Slide 15: Lessons Learnt So Far
	Slide 16: No more shared memory. Can we still attack?

	Prime+Probe
	Slide 17: Attack Strategy #3: Prime+Probe
	Slide 18: Attack Strategy #3: Prime+Probe
	Slide 19: Attack Strategy #3: Prime+Probe
	Slide 20: Analogy: Bucket/Ball
	Slide 21: N-way Set-Associative Cache
	Slide 22: A 6.191/6.004 Quiz Question
	Slide 23: A 6.191/6.004 Quiz Question
	Slide 24: Address Translation (4KB page)
	Slide 25: Using Caches with Virtual Memory
	Slide 26: Best of Both Worlds (L1 Cache): Virtually-Indexed, Physically-Tagged Cache (VIPT)
	Slide 27: Using Huge Pages

	Example Output Traces
	Slide 28: There are still many other practical challenges. If you tackle all of them, you can ...
	Slide 29: Review RSA Vulnerability
	Slide 30: The Multiply Function
	Slide 31: Raw Trace

	End
	Slide 32: Takeaways
	Slide 33: Next: Cache Attack Recitation

