
Practical Cache Attacks

Mengjia Yan

Spring 2025

Leak Crypto Library #1: RSA
• Square-and-Multiply Exponentiation

• Refer to 6.1600 for details how the full algorithm work

Input :

base b

modulo m

exponent e = (en−1 ...e0)2

Output:

be mod m

2

r = 1

for i = n-1 to 0 do

 r = sqr(r)

 r = mod(r, m)

 if ei == 1 then

 r = mul(r, b)

 r = mod(r, m)

 end

end

Leak Crypto Library #2: AES

Repeat 10, 12, 14 times
depending on key size.

3

Input :
 Plaintext
 Secret key
 Lookup Tables

Output:
 Ciphertext

Leak Crypto Library #2: AES T-Table

// s0..s3, t0..t3 are 32-bit integer

for (; ;) {

 t0 = Td0[(s0>>24)] ^ Td1[(s3>>16)&0xff] ^ Td2[(s2>>8)&0xff] ^ Td3[s1&0xff] ^ rk[4];

 t1 = Td0[(s1>>24)] ^ Td1[(s0>>16)&0xff] ^ Td2[(s3>>8)&0xff] ^ Td3[s2&0xff] ^ rk[5];

 t2 = Td0[(s2>>24)] ^ Td1[(s1>>16)&0xff] ^ Td2[(s0>>8)&0xff] ^ Td3[s3&0xff] ^ rk[6];

 t3 = Td0[(s3>>24)] ^ Td1[(s2>>16)&0xff] ^ Td2[(s1>>8)&0xff] ^ Td3[s0&0xff] ^ rk[7];

 rk += 8;

 if (--r == 0) {

 break;

 }

 ...

4

Observation: Secret-dependent memory accesses.

The attacker’s goal:
Monitor access patterns at cache line granularity.

Why Cache?

• Large attack surface. Shared across cores/sockets.

• Fast. Can be used to build high-bandwidth channels

• Many states. Can encode secrets spatially to further improve bandwidth
and precision.

• There exist many cache-like structures. The same attack concepts and
tricks will apply.

6

Attack Strategy #1: Flush+Reload

• The flush instructions allow explicit control of cache states
• In X86, clflush vaddr

• In ARM, DC CIVAC vaddr

• What are these flush instructions used for except for attacks?
• For coherence, in the case when the data in the cache is inconsistent

with the data in the DRAM.

• 1) old time, incoherent DMA

• 2) nowadays, Non-volatile memory for crash recovery

7

Flush+Reload

8

Cache

Victim Attacker
A shared cache line

Time

DRAM

Attacker:
Flush

Victim:
Access

Attacker:
Flush

Victim:
No Access

Attacker:
Reload ->

low latency

Attacker:
Reload ->

high latency

Something might
seem confusing here…

Page Mapping

Virtual Address Space
(Programmer's View)

Physical Address Space
 (limited by DRAM size)

4KB

4KB

VA

PA

Page Table
per process

Process 1

Process 2

4KB

4KB

9

Transparent Page Deduplication

Virtual Address Space
(Programmer's View)

Physical Address Space
 (limited by DRAM size)

4KB

4KB

VA

PA

Page Table
per process

Process 1

Process 2

4KB

the same
content

10

The Attack Code

 mfence

 rdtsc

 mov %eax, %edi

 mov (<vaddr>), %rsi

 mfence

 rdtsc

 sub %edi, %eax

11

In x86, 8 GPR:
• rax, rbx, rcx, rdx
• rsp, rbp
• rsi, rdi
“r” means 64-bit
replacing “r” with “e” means the lower 32 bits.

rdtsc:
• Read Time-Stamp Counter

• edx:eax := TimeStampCounter;

mfence:
• Memory Fence

• Performs a serializing operation on all memory instructions

A load operation

A Demo

Key points:

• We are manipulating microarchitecture states.

• The processor is a blackbox with many different optimizations. With a good
understanding of the processor, we can manipulate the microarchitecture states
better.

• Sometimes, reverse engineering is required.

12

Attack Strategy #2: ?

• Cache state manipulation instructions
• In X86, clflush vaddr

• In ARM, DC CIVAC vaddr

• What if these instructions are not available in user space?
• Apple devices

• “Except ARMv8-A CPUs, ARM processors do not support a flush
instruction”

from ARMageddon: Cache Attacks on Mobile Devices (USENIX’16)

13

Attack Strategy #2: Evict+Reload

14

Cache

Victim Attacker
A shared cache line

Time

DRAM

Attacker:
Access a

large buffer
Victim:
Access

Victim:
No Access

Attacker:
Reload ->

low latency

Attacker:
Reload ->

high latency

Attacker:
Access a

large buffer

Lessons Learnt So Far

So the fundamental problem:
shared memory between
different security domains.

15

Source: https://kb.vmware.com/s/article/2080735

No more shared memory.

Can we still attack?

Attack Strategy #3: Prime+Probe

17

Cache

Victim Attacker

Time

DRAM

Attacker:
Prime a

cache set
Victim:
Access

Victim:
No Access

Attacker:
Prime a

cache set

Sender’s line

Receiver’s line

Attack Strategy #3: Prime+Probe

18

Cache

Victim Attacker

Time

DRAM

Attacker:
Prime a

cache set
Victim:
Access

Victim:
No Access

Attacker:
Prime a

cache set

Sender’s line

Receiver’s line

Attack Strategy #3: Prime+Probe

19

Cache

Victim Attacker

Time

DRAM

Attacker:
Prime a

cache set
Victim:
Access

Victim:
No Access

Attacker:
Prime a

cache set

Sender’s line

Receiver’s line

Attacker:
Probe ->

high latency

Attacker:
Probe ->

low latency

Analogy: Bucket/Ball

20

Shared Cache

Sender Receiver

Cache Set

ways

Sender’s address Receiver’s address

Each cache set is a bucket
that can hold 8 ballsQuestion: Do we really know which

address map to which cache set?

N-way Set-Associative Cache

21

Tag Data Tag DataTag Data Tag Data

8
 s

e
ts

4 ways

SET

WAY

INCOMING ADDRESS

IndexTag

Block offset

A 6.191/6.004 Quiz Question

• I have a virtual address: 0xAAAA

• The cache parameter is as below
• Cache size: 32KB

• Line size/Block size: 64B

• Associativity: 8

22

Question 1:
What is the cache set index?

Question 2:
What is the next address that map to

the same cache set as this one
but not the same cache line?

A 6.191/6.004 Quiz Question

• I have a virtual address: 0xAAAA

• The cache parameter is as below
• Cache size: 32KB --> 64KB

• Line size/Block size: 64B

• Associativity: 8

23

Question 1:
What is the cache set index?

Question 2:
What is the next address that map to

the same cache set as this one
but not the same cache line?

Address Translation (4KB page)

24

Physical Address (32bit):

Virtual Address (48bit):

48 12 11 0

Virtual page number (VPN)
Page offset

(12 bits)

31 12 11 0

Physical page number (PPN)
Page offset

(12 bits)

Page
Table Copy

page offset

Using Caches with Virtual Memory

25

Cache TLB
CPU

Main
memory

Physically-Addressed Cache

• Avoids stale cache data after context
switch

• SLOW: virtual→physical translation
before every cache access

Virtually-Addressed Cache

• FAST: No virtual→physical translation
on cache hits

• Problem: Must flush cache after
context switch

CacheTLBCPU
Main

memory

Best of Both Worlds (L1 Cache):
Virtually-Indexed, Physically-Tagged Cache (VIPT)

26

Cache

CPU
Main

memory

TLB

Cache index comes entirely from address
bits in page offset – don’t need to wait
for TLB to start cache lookup!

Using Huge Pages

• Huge page size: 2MB or 1GB

27

Virtual Address :
4KB page

48 12 11 0

Virtual page number
Page offset

(12 bits)

48 21 20 0

Virtual page number
Page offset

(21 bits)

Virtual Address :
2MB page

Line offset
(6 bits)

Set Index
(8 bits)

TagCache mapping:
(256 sets)

Why system designers
introduce huge pages?

There are still many other practical challenges.

If you tackle all of them, you can ...

Review RSA Vulnerability

• Square-and-Multiply Exponentiation

Input :

 base b

 modulo m

 exponent e = (en−1 ...e0)2

Output:

 be mod m

29

r = 1

for i = n-1 to 0 do

 r = sqr(r)

 r = mod(r, m)

 if ei == 1 then

 r = mul(r, b)

 r = mod(r, m)

 end

end

The Multiply Function

30

Raw Trace

31

Access latencies measured in the probe operation in Prime+Probe on a cache line

inside the multiplication function.

A sequence of “01010111011001” can be deduced as part of the exponent.

Takeaways

• Practical challenges in implementing a reliable cache attack
• Page sharing
• Noise due to prefetchers
• Uncertainty due to page mapping
• Replacement policy
• Etc.

• Hardware and software optimizations make attacks easier
• Transparent page sharing
• Copy-on-write
• Huge pages
• Virtually-indexed and physically-tagged caches

32

Next:
Cache Attack Recitation

	Default Section
	Slide 1: Practical Cache Attacks

	Motivation
	Slide 2: Leak Crypto Library #1: RSA
	Slide 3: Leak Crypto Library #2: AES
	Slide 4: Leak Crypto Library #2: AES T-Table
	Slide 5: Observation: Secret-dependent memory accesses. The attacker’s goal: Monitor access patterns at cache line granularity.
	Slide 6: Why Cache?

	Flush+Reload
	Slide 7: Attack Strategy #1: Flush+Reload
	Slide 8: Flush+Reload
	Slide 9: Page Mapping
	Slide 10: Transparent Page Deduplication
	Slide 11: The Attack Code
	Slide 12: A Demo

	Evict+Reload
	Slide 13: Attack Strategy #2: ?
	Slide 14: Attack Strategy #2: Evict+Reload
	Slide 15: Lessons Learnt So Far
	Slide 16: No more shared memory. Can we still attack?

	Prime+Probe
	Slide 17: Attack Strategy #3: Prime+Probe
	Slide 18: Attack Strategy #3: Prime+Probe
	Slide 19: Attack Strategy #3: Prime+Probe
	Slide 20: Analogy: Bucket/Ball
	Slide 21: N-way Set-Associative Cache
	Slide 22: A 6.191/6.004 Quiz Question
	Slide 23: A 6.191/6.004 Quiz Question
	Slide 24: Address Translation (4KB page)
	Slide 25: Using Caches with Virtual Memory
	Slide 26: Best of Both Worlds (L1 Cache): Virtually-Indexed, Physically-Tagged Cache (VIPT)
	Slide 27: Using Huge Pages

	Example Output Traces
	Slide 28: There are still many other practical challenges. If you tackle all of them, you can ...
	Slide 29: Review RSA Vulnerability
	Slide 30: The Multiply Function
	Slide 31: Raw Trace

	End
	Slide 32: Takeaways
	Slide 33: Next: Cache Attack Recitation

