Transient Execution Attacks

Mengjia Yan
Spring 2025

bl

Outline

* Speculative execution

* Meltdown

* Spectre and its variations Oﬁo}

I Recap: 5-stage Pipeline

vV we
»rsl o
PIrs2 -
g [V we
‘H‘H I—'WS n ’+addr
> wd rd2] a N
GPRs rdata
Inst. J_ N Data
Memory Imm 1| Mdemory
Ext N |_A_| wdata

I-Fetch " Decode, Reg. Fetch" Execute” Memory Write-Back
(IF) (ID) (EX) (MA) (WB)

Recap: 5-stage Pipeline [

ﬁ addr
rdat —‘H—‘

Inst.
Memor

A
R
¢
lal

I-Fetch ' pecode, Reg. Fetch' Execute’ Memory Write-Back
(IF) (ID) (EX) (MA) (WB)

* |n-order execution:

e Execute instructions according to the program order
* One instruction max per pipeline stage

time tO t1 t2 t3 |t4 |t5 t6 t7
instructionl IF; ID; EX; MA;| WB;

instruction4 IF, | 1D, |EX, MA, WB,
instruction5 IF. |ID: EX; MA: WB:

Build High-Performance Processors

Example #1:
Instruction-Level

FMUL 1, f2, 3 ; 10 cycles Parallelism (ILP)
ADD r4, r4, ri ; 1 cycle -> repeat 10 -

when there is NO data-dependency
Example #2: or control-flow dependency

LD r3, 0(r2) ; 1-100 cycles
ADD r4, r4, ril ; 1 cycle -> repeat 10 times

I Technique #1

: Add More Functional Units

IF

+ ID

— Regs

2: ADD

3: ADD

1: FMUL 1, f2,

r4, r4,
r4, r4,

3
rl
rl

ALU

Mem \

Fadd

WB

Fmul

Fdiv

/

I Technique #1

: Add More Functional Units

IF

+ ID

Issue

2: ADD

3: ADD

1: FMUL 1, f2,

r4, r4,
r4, r4,

3
rl
rl

ALU

Mem \\\

Regs

Fadd

WB

Fmul

Fdiv

/

Technique #1: Add More Functional Units

‘ IF » ID |—» Issue

ALU

Mem \

Need a bookkeeping Regs
mechanism to track
dependency

1: FMUL 1, 2, £3 ; f1=f2%f3
~

2: FDIV 5, f1, f4 ; f5=Ff1/f4

Fadd

WB

Fmul

Fdiv

N\

I Technique #2: Scoreboard

Functional Unit

Busy?

Dest Reg

Srcl Reg

Src2 Reg

Int ALU

Mem

Fadd

Fmul

Fdiv

I Technique #2: Scoreboard

Functional Unit

Busy?

Dest Reg

Srcl Reg

Src2 Reg

Int ALU

Mem

Fadd

Fmul

f1

f2

f3

Fdiv

1:
- :

FMUL 1, f2, f3
ADD r4, r4, rl

No dependency, feel free to issue the ADD

10

I Technique #2: Scoreboard

Functional Unit | Busy?

Dest Reg

Srcl Reg

Src2 Reg

Int ALU

Mem

Fadd

Fmul Y

f1

f2

f3

Fdiv

Read-after-Write (RAW)

1:
2

FMUL f1, f2, f3
FDIV 5, f1, f4

Write-after-Write (WAW)

1: FMUL f1, f2, 3 ; 10 cycles

mmpD: FADD f1, f4, f5 ; 4 cycles

Technique #2: Scoreboard

* Upon issue an instruction, check:

1. Whether any ongoing instructions will generate values for my source registers
2. Whether any ongoing instructions will modify my destination register

We call such a processor: in-order issue, out-of-order completion.

A problem: how to handle interrupts/exceptions?

12

I Exception in 000 Processors: Example #1

1: LD r3, 0(r2) ; Exception in 3 cycles

2: ADD r4, rd4, r1 ; 1 cycle Need to delay WB

1 2 3 4 5 6 8

O
1: LD |F ID Issue ALU Mem Meme Mem @ Exception

2: ADD IF ID Issue ALU WB

13

I Exception in 000 Processors: Example #2

1: FMUL f1, f2, f3 ; 10 cycles

2: LD r3, o(r2) ; Exception in 1 cyc Need to delay
Exception

®
1: FMUL IF ID Issue FMUL FMUL FMUL FMUL

1 2 3 4 5 6 7 8

2: LD |F ID Issue ALU Mem = Exception

14

I Technique #3: In-order Commit

IF

1 ID

Issue

ALU

Mem \\\

Regs

Fadd

Fmul

Fdiv

N

Reorder Buffer

Commit

In-order

15

I Another Way to Draw It

In-order

Fetch

ﬁ

Out-of-order

In-order

Decode —

Reorder Buffer

Kil
Kill

Inject handler PC

Exe

Commit

ill

/

To know more advanced out-of-order (Oo00O) features, take 6.5900 [6.823]

16

Virtual Memory

Virtual memory (x86_64 Linux)

0x0000..0000 user function:
Code (user code void hello world(){ printf(“hello word!”); }
+ shared libraries)
libc function:
User Space void printf(){ .. write(); .. }
Heap/stack
oxffff8000.00 | e e e
t Il

void sys write(){ .. }

Why map kernel
address into user
address space?

Kernel Space

Kernel Heaps/stacks

OXFFFf. FFFF

17

I Recap: Page Mapping

Process 1
4KB Page Table Physical Address Space
| PEr process (limited by DRAM size)
VA
PA
Process 2

4KB

4KB > \
4KB

Mapping Kernel Pages

Process 1

Page Table Physical Address Space
4KB per process (limited by DRAM size)
' VA
\—PA\
Process 2

4KB

4KB > \
4KB

Assume separate AKB
kernel address space 4KB

A4

I Jumping Between User and Kernel Space

Process 1

Kernel

4KB

 Context switch overhead:

* Page table changes introduce perf overhead,
e.g., flush TLB in some processors

4KB

Vv

oo * And sometimes, we only go to kernel to do
some simple things, getpid()

* Performance optimization:

* Map kernel address into user space in a secure
way, so no need to swap page tables

20

I Map Kernel Pages Into User Space Securely

Virtual memory (x86_64 Linux)
0Xx0000...0000

User Space

Oxff{{8000..00

Kernel Space

OXFFFf. FFFF

Unified Page Table

Page Table Entry (PTE)
—

PPN

Permission:
Kernel?
R/W/X?

e Fast context switch:

* The kernel remains mapped
* Only a mode switch (user - kernel) is needed

21

Meltdown

Meltdown

* Meltdown explores the combined effects of two optimizations

* Hardware optimization: out-of-order execution
e Software optimization: mapping kernel addresses into user space

e Attack outcome: user space applications can read arbitrary kernel data

Goal: in user space, pick a kernel address and leak its content ROB head

Ldl: uint8 t secret = *kernel address;
Ld2: unit8 t dummy = probe array[secret*64];

23

I Meltdown Timing

Case 1: Fail. Ld2 is squashed before the
corresponding memory access is issued.

Ldl: uint8 t secret = *kernel address;
Ld2: unit8 t dummy = probe array[secret*64];

Case 2: Attack works. Ld2’s request is sent
out before the instruction is squashed.

start finish start finish
execution execution commit -> exception execution execution commit -> exception
Ld1: @ O—@ > Ld1: @ O - —
address A forward address A forward
translation secnet translation secdret
to LD2 to LD2
Ld2: > Ld2: @, >

L2 issues its access

24

Meltdown w/ Flush+Reload

1. Setup: Attacker allocates probe array, with 256 cache lines.
Flushes all its cache lines

2. Transmit: Attacker executes

Ldl: uint8 t secret = *kernel address;
Ld2: unit8 t dummy = probe array[secret*64];

3. Receive: After handling protection fault, attacker performs cache
side channel attack to figure out which line of probe array is
accessed = recovers byte

25

Why it takes so long for
Meltdown to be discovered?

Software Hardware
SW optimization:
Map kernel address
in user space

Contract: Memory access goes through page permission check,
and permission violation raises exceptions
HW optimization:
Speculation to delay
exception handling

26

Meltdown Mitigations

e Stop one of the optimizations should be sufficient

 SW: Do not let user and kernel share address space (KPTI) -> broken by
several groups (e.g., EntryBleed)

 HW: Stall speculation; Register poisoning

Ldl: uint8 t secret = *kernel address;
Ld2: unit8 t dummy = probe array[secret*64];

* We generally consider Meltdown as a design bug

Will Liu, EntryBleed, https://www.willsroot.io/2022/12/entrybleed.html?m=1

27

Spectre and its Variants QB/

void func(int x){
//prevent out-of-bound array access
if (x < array_size) {
val = array[x]

¥

return val;

28

Branch Prediction

* Motivation: control-flow penalty

« Modern processors may have > 10 pipeline stages between
next PC calculation and branch resolution!

In-order Out-of-order In-order

Fetch " Decode —| Reorder Buffer }——| Commit

I
Kill

i
Exe

Mjs-prediction

Inject handler PC

I Branch Prediction

* Naive approach: PC+4

* More advanced, predict two things:
* Direction of a conditional branch (whether a branch is taken or not)

e blt r‘l, f‘z, <label> Idea: 1-bit predictor for loop

* The target address of a branch

*J alr < reg> Idea: memorizing branch source
e ret and destination pairs

30

I A Simple Branch Predictor Unit (BPU)

PC predicted * When branch instruction commits

Valid T/N _ target PC Update the predictor
1

* In the fetch stage

e Use the predictor to decide what
address to fetch next

* Limited space?
* Use selected bits in PC to index into the
valid T/N target predictor

31

Spectre V1 - Speculative Out-of-Bound

* Consider code running inside a sandbox Always malicious?

Br: if (x < size_arrayl) {

Ld1: secret = arrayl[x] ROB head

y

Ld2: y = array2[secret*64]

14

Attacker to read arbitrary memory:
1. Setup: Train branch predictor

2. Transmit: Trigger branch misprediction; &arrayl[x]| maps to some desired
kernel address

3. Receive: Attacker probes cache to infer which line of array2 was fetched

No. It may be a benign misprediction.
We do not consider Spectre as a bug.

32

Spectre V2 — Speculative JOP

PC_train

¥

Collide on BPU

1)

PC_victim_src

PC_spectre

PC

1. Insert <PC_train, PC_spectre>
2. Trigger PC _victim_src
3. Speculative execute PC_spectre

predicted

Valid T/N target PC

Br: jump Ld1l

Br: if (..) {
}

Ldl: secret =

Ld2: y = array2[secret*4096]

valid T/N target

33

General Attack Schema

Victim

Access secret transmit (secret)

Channel
- A

DAWG: A Defense Against Cache Timing Attacks in Speculative Execution Processors. Kiriansky et al. MICRO’18

34

Apply the General Attack Scheme

The RSA Square-and-Multiply
Exponentiation example.

Attackers aim to leak e

Which is access
operation?
Which is transmit
operation?

r=1

for i =

end

n-1 to 0 do
r = sqr(r)

r = mod(r, m)

i'F ei ==
r\

r\

end

then
mul(r, b)

mod(r, m)

35

I Apply the General Attack Scheme

Which is access

------ operation?
Ldl: uint8 t secret = *kernel address; Which is t it
Ld2: unit8 t dummy = probe array[secret*64]; ICR 1S transmi
operation?

Br: if (x < size_arrayl) { Br: if (..) {
Ld1l: secret = arrayl[x] }
Ld2: y = array2[secret*64]

} Ldl: secret =

Ld2: y = array2[secret*4096]

General Attack Schema

Victim

Access secret transmit (secret)

Channel
- L

* Traditional (non-transient) attacks

* Gadget preexist in victim space. Leak data in-use

* Transient attacks: Gadget constructs via speculation. Leak data-at-rest
* Meltdown = transient execution + deferred exception handling

* Spectre = transient execution on wrong paths [FEFSEPNES

37

Next: Cache Attack Recitation

{WE

bl

	Default Section
	Slide 1: Transient Execution Attacks
	Slide 2: Outline

	OoO Processors
	Slide 3: Recap: 5-stage Pipeline
	Slide 4: Recap: 5-stage Pipeline
	Slide 5: Build High-Performance Processors
	Slide 6: Technique #1: Add More Functional Units
	Slide 7: Technique #1: Add More Functional Units
	Slide 8: Technique #1: Add More Functional Units
	Slide 9: Technique #2: Scoreboard
	Slide 10: Technique #2: Scoreboard
	Slide 11: Technique #2: Scoreboard
	Slide 12: Technique #2: Scoreboard
	Slide 13: Exception in OoO Processors: Example #1
	Slide 14: Exception in OoO Processors: Example #2
	Slide 15: Technique #3: In-order Commit
	Slide 16: Another Way to Draw It

	Mapping Kernel Pages
	Slide 17: Virtual Memory
	Slide 18: Recap: Page Mapping
	Slide 19: Mapping Kernel Pages
	Slide 20: Jumping Between User and Kernel Space
	Slide 21: Map Kernel Pages Into User Space Securely

	Meltdown w/ Flush+Reload
	Slide 22: Meltdown
	Slide 23: Meltdown
	Slide 24: Meltdown Timing
	Slide 25: Meltdown w/ Flush+Reload
	Slide 26: Why it takes so long for Meltdown to be discovered?
	Slide 27: Meltdown Mitigations

	Spectre
	Slide 28: Spectre and its Variants
	Slide 29: Branch Prediction
	Slide 30: Branch Prediction
	Slide 31: A Simple Branch Predictor Unit (BPU)
	Slide 32: Spectre V1 – Speculative Out-of-Bound
	Slide 33: Spectre V2 – Speculative JOP

	Attack Schema
	Slide 34: General Attack Schema
	Slide 35: Apply the General Attack Scheme
	Slide 36: Apply the General Attack Scheme
	Slide 37: General Attack Schema

	End
	Slide 38: Next: Cache Attack Recitation

