
Transient Execution Attacks

Mengjia Yan

Spring 2025

Outline

• Speculative execution

• Meltdown

• Spectre and its variations

2

Recap: 5-stage Pipeline

3

Write-Back
(WB)

Decode, Reg. Fetch
(ID)

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wdrd2

we

Execute
(EX)

ALU

Memory
(MA)

addr

wdata

rdata
Data
Memory

we

I-Fetch
(IF)

0x4

Add

addr
rdata

Inst.
Memory

IR
PC

Recap: 5-stage Pipeline

• In-order execution:
• Execute instructions according to the program order

• One instruction max per pipeline stage

4

time t0 t1 t2 t3 t4 t5 t6 t7
instruction1 IF1 ID1 EX1 MA1 WB1

instruction2 IF2 ID2 EX2 MA2 WB2

instruction3 IF3 ID3 EX3 MA3 WB3

instruction4 IF4 ID4 EX4 MA4 WB4

instruction5 IF5 ID5 EX5 MA5 WB5

Write-Back
(WB)

I-Fetch
(IF)

Execute
(EX)

Decode, Reg. Fetch
(ID)

Memory
(MA)

addr

wdata

rdata
Data
Memory

we

ALU

Imm
Ext

0x4

Add

addr
rdata

Inst.

Memory

rd1

GPRs

rs1
rs2

ws
wdrd2

we

IR
PC

Build High-Performance Processors

Example #1:

FMUL f1, f2, f3 ; 10 cycles
ADD r4, r4, r1 ; 1 cycle -> repeat 10 times
……

Example #2:

LD r3, 0(r2) ; 1-100 cycles
ADD r4, r4, r1 ; 1 cycle -> repeat 10 times
……

5

Instruction-Level
Parallelism (ILP)

when there is NO data-dependency
or control-flow dependency

Technique #1: Add More Functional Units

1: FMUL f1, f2, f3

2: ADD r4, r4, r1

3: ADD r4, r4, r1

6

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Regs

Technique #1: Add More Functional Units

7

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

Regs

1: FMUL f1, f2, f3

2: ADD r4, r4, r1

3: ADD r4, r4, r1

Technique #1: Add More Functional Units

1: FMUL f1, f2, f3 ; f1=f2*f3

2: FDIV f5, f1, f4 ; f5=f1/f4

8

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

RegsNeed a bookkeeping
mechanism to track

dependency

Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU

Mem

Fadd

Fmul

Fdiv

9

Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU

Mem

Fadd

Fmul Y f1 f2 f3

Fdiv

10

1: FMUL f1, f2, f3

2: ADD r4, r4, r1 No dependency, feel free to issue the ADD

Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU

Mem

Fadd

Fmul Y f1 f2 f3

Fdiv

11

1: FMUL f1, f2, f3

2: FDIV f5, f1, f4

1: FMUL f1, f2, f3 ; 10 cycles

2: FADD f1, f4, f5 ; 4 cycles

Read-after-Write (RAW) Write-after-Write (WAW)

Technique #2: Scoreboard

• Upon issue an instruction, check:
1. Whether any ongoing instructions will generate values for my source registers

2. Whether any ongoing instructions will modify my destination register

We call such a processor: in-order issue, out-of-order completion.

A problem: how to handle interrupts/exceptions?

12

Exception in OoO Processors: Example #1

1 2 3 4 5 6 7 8

1: LD IF ID Issue ALU Mem Mem Mem Exception

2: ADD IF ID Issue ALU WB

13

1: LD r3, 0(r2) ; Exception in 3 cycles

2: ADD r4, r4, r1 ; 1 cycle Need to delay WB

Exception in OoO Processors: Example #2

1 2 3 4 5 6 7 8

1: FMUL IF ID Issue FMUL FMUL FMUL FMUL …

2: LD IF ID Issue ALU Mem Exception

14

1: FMUL f1, f2, f3 ; 10 cycles

2: LD r3, 0(r2) ; Exception in 1 cycle Need to delay
Exception

Technique #3: In-order Commit

15

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

Regs

R
e
o
rd

e
r

B
u
ff
e
r

Commit

In-order

Another Way to Draw It

16

Fetch Decode

Execute

CommitReorder Buffer

In-order In-orderOut-of-order

Kill
Kill Kill

Exception?Inject handler PC

To know more advanced out-of-order (OoO) features, take 6.5900 [6.823]

Virtual Memory

17

Virtual memory (x86_64 Linux)

Kernel Space

0x0000…0000

0xffff…ffff

User Space

user function:
void hello_world(){ printf(“hello word!”); }

libc function:
void printf(){ … write(); … }

0xffff8000…00

system call:
void sys_write(){ … }

Code (user code
+ shared libraries)

Heap/stack

Kernel Heaps/stacks

Kernel code

Why map kernel
address into user
address space?

Recap: Page Mapping

18

Physical Address Space
 (limited by DRAM size)

4KB

4KB

VA
PA

Page Table
per process

Process 1

Process 2

4KB

4KB

Mapping Kernel Pages

19

Physical Address Space
 (limited by DRAM size)

4KB

4KB

VA
PA

Page Table
per process

Process 1

Process 2

4KB

4KB

Assume separate
kernel address space 4KB

4KB

Jumping Between User and Kernel Space

20

Process 1

4KB

Kernel
4KB

• Context switch overhead:
• Page table changes introduce perf overhead,

e.g., flush TLB in some processors

• And sometimes, we only go to kernel to do
some simple things, getpid()

• Performance optimization:
• Map kernel address into user space in a secure

way, so no need to swap page tables

Map Kernel Pages Into User Space Securely

21

Virtual memory (x86_64 Linux)

Kernel Space

0x0000…0000

0xffff…ffff

User Space

0xffff8000…00

Unified Page Table
Page Table Entry (PTE)

PPN
Permission:
Kernel?
R/W/X?

• Fast context switch:
• The kernel remains mapped

• Only a mode switch (user → kernel) is needed

Meltdown

22

ROB head

… LD
2

LD
1

…

Meltdown

• Meltdown explores the combined effects of two optimizations
• Hardware optimization: out-of-order execution

• Software optimization: mapping kernel addresses into user space

• Attack outcome: user space applications can read arbitrary kernel data

23

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Goal: in user space, pick a kernel_address and leak its content

Meltdown Timing

24

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Ld1:

Ld2:

start
execution

finish
execution

address
translation

commit -> exception

forward
secret
to LD2

Case 1: Fail. Ld2 is squashed before the
corresponding memory access is issued.

Ld1:

Ld2:

start
execution

finish
execution

address
translation

commit -> exception

Case 2: Attack works. Ld2’s request is sent
out before the instruction is squashed.

L2 issues its access

forward
secret
to LD2

Meltdown w/ Flush+Reload

1. Setup: Attacker allocates probe_array, with 256 cache lines.
Flushes all its cache lines

2. Transmit: Attacker executes

3. Receive: After handling protection fault, attacker performs cache
side channel attack to figure out which line of probe_array is
accessed → recovers byte

25

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Why it takes so long for
Meltdown to be discovered?

26

Software Hardware

Contract: Memory access goes through page permission check,
and permission violation raises exceptions

SW optimization:
Map kernel address

in user space

HW optimization:
Speculation to delay
exception handling

Meltdown Mitigations
• Stop one of the optimizations should be sufficient

• SW: Do not let user and kernel share address space (KPTI) -> broken by
several groups (e.g., EntryBleed)

• HW: Stall speculation; Register poisoning

• We generally consider Meltdown as a design bug

27

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Will Liu, EntryBleed, https://www.willsroot.io/2022/12/entrybleed.html?m=1

Spectre and its Variants

28

void func(int x){

 //prevent out-of-bound array access

if (x < array_size) {

 val = array[x]

 }

 return val;

}

Branch Prediction

• Motivation: control-flow penalty
• Modern processors may have > 10 pipeline stages between

next PC calculation and branch resolution!

29

Fetch Decode

Execute

CommitReorder Buffer

In-order In-orderOut-of-order

Kill
Kill Kill

Exception?Inject handler PC Mis-prediction?

Branch Prediction

• Naïve approach: PC+4

• More advanced, predict two things:
• Direction of a conditional branch (whether a branch is taken or not)

• blt r1, r2, <label>

• The target address of a branch

• jalr <reg>

• ret

30

Idea: 1-bit predictor for loop

Idea: memorizing branch source
and destination pairs

A Simple Branch Predictor Unit (BPU)

• When branch instruction commits
• Update the predictor

• In the fetch stage
• Use the predictor to decide what

address to fetch next

• Limited space?
• Use selected bits in PC to index into the

predictor

31

PC

k

valid

Valid

target

predicted

target PC

T/N

T/N

Spectre V1 – Speculative Out-of-Bound

• Consider code running inside a sandbox

32

Br: if (x < size_array1) {

Ld1: secret = array1[x]

Ld2: y = array2[secret*64]

 }

Attacker to read arbitrary memory:
1. Setup: Train branch predictor
2. Transmit: Trigger branch misprediction; &array1[x] maps to some desired
kernel address
3. Receive: Attacker probes cache to infer which line of array2 was fetched

ROB head

… LD
2

LD
1

B
r …

Always malicious?
No. It may be a benign misprediction.
We do not consider Spectre as a bug.

Spectre V2 – Speculative JOP

33

Br: if (…) {

… }

…

Ld1: secret = array1[x]

Ld2: y = array2[secret*4096]

PC_victim_src

PC_spectre

PC

k

valid

Valid

target

predicted

target PC

T/N

T/N

Br: jump Ld1PC_train

1. Insert <PC_train, PC_spectre>
2. Trigger PC_victim_src
3. Speculative execute PC_spectre

Collide on BPU

General Attack Schema

34

AttackerVictim

Access secret transmit (secret) recv()
Channel

DAWG: A Defense Against Cache Timing Attacks in Speculative Execution Processors. Kiriansky et al. MICRO’18

Apply the General Attack Scheme

35

r = 1

for i = n-1 to 0 do

 r = sqr(r)

 r = mod(r, m)

 if ei == 1 then

 r = mul(r, b)

 r = mod(r, m)

 end

end

The RSA Square-and-Multiply
Exponentiation example.

Attackers aim to leak e

Which is access
operation?

Which is transmit
operation?

Apply the General Attack Scheme

36

Which is access
operation?

Which is transmit
operation?

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Br: if (x < size_array1) {

Ld1: secret = array1[x]

Ld2: y = array2[secret*64]

 }

Br: if (…) {

… }

…

Ld1: secret = array1[x]

Ld2: y = array2[secret*4096]

General Attack Schema

• Traditional (non-transient) attacks
• Gadget preexist in victim space. Leak data in-use

• Transient attacks: Gadget constructs via speculation. Leak data-at-rest
• Meltdown = transient execution + deferred exception handling

• Spectre = transient execution on wrong paths
37

“Easy” to fix

Hard to fix

Hard to fix

AttackerVictim

Access secret transmit (secret) recv()
Channel

Next: Cache Attack Recitation

	Default Section
	Slide 1: Transient Execution Attacks
	Slide 2: Outline

	OoO Processors
	Slide 3: Recap: 5-stage Pipeline
	Slide 4: Recap: 5-stage Pipeline
	Slide 5: Build High-Performance Processors
	Slide 6: Technique #1: Add More Functional Units
	Slide 7: Technique #1: Add More Functional Units
	Slide 8: Technique #1: Add More Functional Units
	Slide 9: Technique #2: Scoreboard
	Slide 10: Technique #2: Scoreboard
	Slide 11: Technique #2: Scoreboard
	Slide 12: Technique #2: Scoreboard
	Slide 13: Exception in OoO Processors: Example #1
	Slide 14: Exception in OoO Processors: Example #2
	Slide 15: Technique #3: In-order Commit
	Slide 16: Another Way to Draw It

	Mapping Kernel Pages
	Slide 17: Virtual Memory
	Slide 18: Recap: Page Mapping
	Slide 19: Mapping Kernel Pages
	Slide 20: Jumping Between User and Kernel Space
	Slide 21: Map Kernel Pages Into User Space Securely

	Meltdown w/ Flush+Reload
	Slide 22: Meltdown
	Slide 23: Meltdown
	Slide 24: Meltdown Timing
	Slide 25: Meltdown w/ Flush+Reload
	Slide 26: Why it takes so long for Meltdown to be discovered?
	Slide 27: Meltdown Mitigations

	Spectre
	Slide 28: Spectre and its Variants
	Slide 29: Branch Prediction
	Slide 30: Branch Prediction
	Slide 31: A Simple Branch Predictor Unit (BPU)
	Slide 32: Spectre V1 – Speculative Out-of-Bound
	Slide 33: Spectre V2 – Speculative JOP

	Attack Schema
	Slide 34: General Attack Schema
	Slide 35: Apply the General Attack Scheme
	Slide 36: Apply the General Attack Scheme
	Slide 37: General Attack Schema

	End
	Slide 38: Next: Cache Attack Recitation

