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Outline

• Speculative execution

• Meltdown

• Spectre and its variations
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Recap: 5-stage Pipeline
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Recap: 5-stage Pipeline

• In-order execution:
• Execute instructions according to the program order

• One instruction max per pipeline stage
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time  t0 t1 t2 t3 t4 t5 t6 t7 . . . .
instruction1 IF1 ID1 EX1 MA1 WB1

instruction2  IF2 ID2 EX2 MA2 WB2

instruction3   IF3 ID3 EX3 MA3 WB3

instruction4    IF4 ID4 EX4 MA4 WB4

instruction5     IF5 ID5 EX5 MA5 WB5
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Build High-Performance Processors

Example #1:

FMUL f1, f2, f3  ; 10 cycles
ADD  r4, r4, r1  ; 1 cycle  -> repeat 10 times
……

Example #2:

LD  r3, 0(r2)   ; 1-100 cycles 
ADD r4, r4, r1  ; 1 cycle -> repeat 10 times
……
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Instruction-Level 
Parallelism (ILP)

when there is NO data-dependency
or control-flow dependency



Technique #1: Add More Functional Units

1: FMUL f1, f2, f3 

2: ADD  r4, r4, r1  

3: ADD  r4, r4, r1
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Technique #1: Add More Functional Units
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1: FMUL f1, f2, f3 

2: ADD  r4, r4, r1  

3: ADD  r4, r4, r1



Technique #1: Add More Functional Units

1: FMUL f1, f2, f3 ; f1=f2*f3

2: FDIV f5, f1, f4 ; f5=f1/f4
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Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU

Mem

Fadd

Fmul

Fdiv
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Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU

Mem

Fadd

Fmul Y f1 f2 f3

Fdiv
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1: FMUL f1, f2, f3 

2: ADD  r4, r4, r1  No dependency, feel free to issue the ADD



Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU

Mem

Fadd

Fmul Y f1 f2 f3

Fdiv
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1: FMUL f1, f2, f3 

2: FDIV f5, f1, f4

1: FMUL f1, f2, f3 ; 10 cycles

2: FADD f1, f4, f5 ; 4 cycles

Read-after-Write (RAW) Write-after-Write (WAW)



Technique #2: Scoreboard

• Upon issue an instruction, check:
1. Whether any ongoing instructions will generate values for my source registers

2. Whether any ongoing instructions will modify my destination register

We call such a processor: in-order issue, out-of-order completion.

A problem: how to handle interrupts/exceptions?
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Exception in OoO Processors: Example #1

1 2 3 4 5 6 7 8

1: LD IF ID Issue ALU Mem Mem Mem Exception

2: ADD IF ID Issue ALU WB
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1: LD  r3, 0(r2)   ; Exception in 3 cycles 

2: ADD r4, r4, r1  ; 1 cycle Need to delay WB



Exception in OoO Processors: Example #2

1 2 3 4 5 6 7 8

1: FMUL IF ID Issue FMUL FMUL FMUL FMUL …

2: LD IF ID Issue ALU Mem Exception
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1: FMUL f1, f2, f3 ; 10 cycles

2: LD  r3, 0(r2)   ; Exception in 1 cycle Need to delay 
Exception



Technique #3: In-order Commit
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Another Way to Draw It
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To know more advanced out-of-order (OoO) features, take 6.5900 [6.823]



Virtual Memory
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Virtual memory (x86_64 Linux)

Kernel Space

0x0000…0000

0xffff…ffff

User Space

user function:
void hello_world(){ printf(“hello word!”); }

libc function:
void printf(){ …  write(); … }

0xffff8000…00

system call:
void sys_write(){ … }

Code (user code
+ shared libraries)

Heap/stack

Kernel Heaps/stacks

Kernel code

Why map kernel 
address into user 
address space?



Recap: Page Mapping
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Mapping Kernel Pages
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Jumping Between User and Kernel Space
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Process 1

4KB

Kernel
4KB

• Context switch overhead:
• Page table changes introduce perf overhead, 

e.g., flush TLB in some processors

• And sometimes, we only go to kernel to do 
some simple things, getpid()

• Performance optimization: 
• Map kernel address into user space in a secure 

way, so no need to swap page tables



Map Kernel Pages Into User Space Securely
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Virtual memory (x86_64 Linux)

Kernel Space

0x0000…0000

0xffff…ffff

User Space

0xffff8000…00

Unified Page Table
Page Table Entry (PTE)

PPN
Permission:
Kernel?
R/W/X?

• Fast context switch:
• The kernel remains mapped 

• Only a mode switch (user → kernel) is needed



Meltdown

22



ROB head

… LD
2

LD
1

…

Meltdown

• Meltdown explores the combined effects of two optimizations
• Hardware optimization: out-of-order execution

• Software optimization: mapping kernel addresses into user space

• Attack outcome: user space applications can read arbitrary kernel data
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…… 
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Goal: in user space, pick a kernel_address and leak its content



Meltdown Timing

24

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Ld1: 

Ld2: 

start
execution

finish
execution

address
translation

commit -> exception

forward 
secret 
to LD2

Case 1: Fail. Ld2 is squashed before the 
corresponding memory access is issued.

Ld1: 

Ld2: 

start
execution

finish
execution

address
translation

commit -> exception

Case 2: Attack works. Ld2’s request is sent 
out before the instruction is squashed.

L2 issues its access

forward 
secret 
to LD2



Meltdown w/ Flush+Reload

1. Setup: Attacker allocates probe_array, with 256 cache lines. 
Flushes all its cache lines

2. Transmit: Attacker executes

3. Receive: After handling protection fault, attacker performs cache 
side channel attack to figure out which line of probe_array is 
accessed → recovers byte
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……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];



Why it takes so long for 
Meltdown to be discovered?
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Software Hardware

Contract: Memory access goes through page permission check, 
and permission violation raises exceptions

SW optimization:
Map kernel address 

in user space

HW optimization:
Speculation to delay 
exception handling



Meltdown Mitigations
• Stop one of the optimizations should be sufficient

• SW: Do not let user and kernel share address space (KPTI) -> broken by 
several groups (e.g., EntryBleed)

• HW: Stall speculation; Register poisoning

• We generally consider Meltdown as a design bug
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……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Will Liu, EntryBleed, https://www.willsroot.io/2022/12/entrybleed.html?m=1



Spectre and its Variants
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void func(int x){

 //prevent out-of-bound array access

if (x < array_size) { 

  val = array[x]

 }

 return val;

}



Branch Prediction

• Motivation: control-flow penalty
• Modern processors may have > 10 pipeline stages between 

next PC calculation and branch resolution!
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Branch Prediction

• Naïve approach: PC+4

• More advanced, predict two things:
• Direction of a conditional branch (whether a branch is taken or not)

• blt r1, r2, <label>

• The target address of a branch

• jalr <reg>

• ret

30

Idea: 1-bit predictor for loop

Idea: memorizing branch source 
and destination pairs



A Simple Branch Predictor Unit (BPU)

• When branch instruction commits
• Update the predictor

• In the fetch stage
• Use the predictor to decide what 

address to fetch next

• Limited space?
• Use selected bits in PC to index into the 

predictor
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Spectre V1 – Speculative Out-of-Bound

• Consider code running inside a sandbox
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Br:  if (x < size_array1) {

Ld1:      secret = array1[x]

Ld2:    y = array2[secret*64]

     }

Attacker to read arbitrary memory:
1. Setup: Train branch predictor
2. Transmit: Trigger branch misprediction; &array1[x] maps to some desired 
kernel address
3. Receive: Attacker probes cache to infer which line of array2 was fetched

ROB head

… LD
2

LD
1

B
r …

Always malicious?
No. It may be a benign misprediction.
We do not consider Spectre as a bug.



Spectre V2 – Speculative JOP
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Br: if (…) {

…      }

…

Ld1: secret = array1[x]

Ld2: y = array2[secret*4096]

PC_victim_src

PC_spectre

PC

k

valid

Valid

target

predicted

target PC

T/N

T/N

Br: jump Ld1PC_train

1. Insert <PC_train, PC_spectre>
2. Trigger PC_victim_src
3. Speculative execute PC_spectre

Collide on BPU



General Attack Schema
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AttackerVictim

Access secret transmit (secret) recv()
Channel

DAWG: A Defense Against Cache Timing Attacks in Speculative Execution Processors. Kiriansky et al. MICRO’18



Apply the General Attack Scheme
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r = 1

for i = n-1 to 0 do 

 r = sqr(r) 

 r  = mod(r, m)

 if ei == 1 then 

  r = mul(r, b)

  r = mod(r, m)

 end 

end 

The RSA Square-and-Multiply 
Exponentiation example.

Attackers aim to leak e

Which is access 
operation?

Which is transmit 
operation?



Apply the General Attack Scheme
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Which is access 
operation?

Which is transmit 
operation?

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Br:  if (x < size_array1) {

Ld1:      secret = array1[x]

Ld2:    y = array2[secret*64]

     }

Br: if (…) {

…      }

…

Ld1: secret = array1[x]

Ld2: y = array2[secret*4096]



General Attack Schema

• Traditional (non-transient) attacks
• Gadget preexist in victim space. Leak data in-use

• Transient attacks: Gadget constructs via speculation. Leak data-at-rest
• Meltdown = transient execution + deferred exception handling

• Spectre = transient execution on wrong paths
37

“Easy” to fix

Hard to fix

Hard to fix

AttackerVictim

Access secret transmit (secret) recv()
Channel



Next: Cache Attack Recitation
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