Hertzbleed: Turning Power
Side-Channel Attacks Into
Remote Timing Attacks on x86

Selena Qiao

Background (!)

Power side-channel attacks exploit data-dependent variations in a CPU’s power
consumption to leak secrets

Dynamic voltage and frequency scaling (DVFS) management is a technique used
to switch the CPU core frequency based on load requirement. It consists of dynamically
adjusting CPU frequency to reduce power consumption (during low CPU loads) and to
ensure that the system stays below power and thermal limits (during high CPU loads). Under
certain circumstances, DVFS-induced CPU frequency adjustments depend on the current
power consumption at the granularity of milliseconds.

VddAlwaysOn

VddHigh VddLow
—

Key Contribution

AT e T T

We find that, under certain
circumstances, DVFS-induced variations in CPU frequency
depend on the current power consumption (and hence, data)
at the granularity of milliseconds. Making matters worse,
these variations can be observed by a remote attacker, since
frequency differences translate to wall time differences!

The frequency side channel is theoretically more powerful
than the software side channels considered in cryptographic
engineering practice today, but it is difficult to exploit because
it has a coarse granularity. Yet, we show that this new channel
is a real threat to the security of cryptographic software. First,
we reverse engineer the dependency between data, power,
and frequency on a modern x86 CPU—finding, among other
things, that differences as seemingly minute as a set bit’s
position in a word can be distinguished through frequency
changes. Second, we describe a novel chosen-ciphertext at-
tack against (constant-time implementations of) SIKE, a post-
quantum key encapsulation mechanism, that amplifies a sin-
gle key-bit guess into many thousands of high- or low-power
operations, allowing full key extraction via remote timing.

Key Contribution

rax = COUNT
Ox0000FFFFFFFF0000

rbx

loocp:
shlx $rax, $rbx, %rcx
shlx %rax, %rbx, ¥rdx
shrx %rax, 3rbx, $rsi
shrx %$rax, 3rbx, $rdi
shlx %rax, 3rbx, %r8
shlx %rax, %rbx, %r9
shrx %rax, ¥rbx, $rl0
shrx %rax, ¥rbx, $rll

jmp loop

//
//
//
//
/

/l x

//
/

rcx

"
Q
"

"
w
N

U -

<<
>>

>> x

<<
<<
>>
>>

rax = LEFT
rcx = = rll
loop:

or %rax,%rcx
or %rax,%rdx
or %rax, %rsi
or %rax,%rdi
or %rax,%r8

or %rax,%r9

or %rax,%rl0
or %rax,srll

jmp locp

//
//
//
//
/1
/i
/!
4

rex
rdx
rsi
rdi
r8

r9

rl0
rll

rax

rax

rax

rax

rax

rax

rax

rax

rcx
rdx
rsi

rdi

rax = rcx = rdx = rsi = rdi = FIRST
rbx = ¥r8 = r9 = r1l0 = rll = SECOND

loop:
or %rax,%rcx // rex = rax | rex
or %rax,%rdx // rdx = rax | rdx
or %rax,%rsi // rsi = rax | rsi
or %rax,%rdi // rdi = rax | rdi
or %rbx,%r8 // r8 = rbx | r8
or %rbx,%r9 // r% = rbx | r9
or %rbx,%rl0 // rl0 = rbx | rl0
or %rbx,%rill // rll = rbx | rll

jmp locp

(a) Sender for our HD experiments.

(b) Sender for our HW experiments.

(c) Sender for our HW+HD experiments.

Power and Frequency

27.25

5416 o ot b =438 2125
F4 _ 27.00 B z =
) L Il S 27.00
z 5275 s Ta1s I
a4 5 g § 2675
o z @ E
H 8 26550 3 H
H H 2650
26.25
412 12 26.25
0 20 40 60 [20 40 60 o 2 4 & 8 o 2 a4 6 8

Hamming weight Hamming weight Hamming weight

Hamming weight

1560
T 1558 Z 1558
E ®'memn| E
o ® m=m_y o
E 1396 E 1556
1554
0 3 6 9 12 15 18 345 348 351 354 357 360 363

Secret key bit index

(a) PQCrypto-SIDH first 20 bits

Secret key bit index

(b) PQCrypto-SIDH last 20 bits

(a) Frequency vs HW (b) Power vs HW (a) Frequency vs HW (b) Power vs HW
= —0.004 + t
g + L < 0.20 Fh
g s z
z o = 4.
g —0.006 bt §o1s | > 4.02
g e 8 400
£ -0.008 ‘ <010 * { i H
< t t * 398
01234567 01 2 3 4 5 6 7) 20 20 60 b3 20 P 50
Syzs Index Byte Index HW of SECOND HW of SECOND
(a) Effect of OxFF to frequency (b) Effect of OxFF to power (a) Frequency vs HW (b) Power vs HW
- m-mo
08 mema
z z
gos H
ool 2
& &
0.2
0.0
38 39 4.0 36 37
Frequency (GHz) Frequency (GHz) ——
Zoa1s mamoy | 2010
> 203 m=m_s £ -
£) m e m—y d i 23
§02 5 2030 2z
d 02 = =
> > 3 3 0.05
g - 2005 2
g0 o £ £
g £ E 0.00
0.0 0.0 650 660 670 1550 1560 1570 1580
30 35 40 40 45 Time (ms) Time (ms)
Power consumption (W) Power consumption (W)
(a) CIRCL data (b) PQCrypto-SIDH data (a) CIRCL histogram (b) PQCrypto-SIDH histogram

663 663
7 662 2
& # mem. | E662 ® e
o ® meam_, @ ® |m=ml
2 661 2
S & 661
660 660
0 3 6 9 12 15 18 345 348 351 354 357 360 363
Secret key bit index Secret key bit index
(a) CIRCL first 20 bits (b) CIRCL last 20 bits

SIKE Attack Setup + Results

The SIKE timing attack was conducted on an i7-9700 CPU with
two server configurations: an HTTP server using Go’s net . http
library for CIRCL and a TCP server using C with pthread for
PQCrypto-SIDH. The attacker sent 300 concurrent requests for
CIRCL and 1000 for PQCrypto-SIDH, all using the same crafted
challenge ciphertext. Timings were measured until the last
connection completed, with expected anomalies in CPU
frequency leading to timing differences: CIRCL showed at most
660.2 ms versus at least 662.5 ms, while PQCrypto-SIDH showed
at most 1556 ms versus at least 1558 ms. After repeating the
measurements 400 times, excluding outliers, and computing
medians, the key was extracted up to bit 364, with the last 14 bits
recovered via brute force. Figures illustrate timing distributions for
the first and last 20 bits, revealing differences depending on
whether the ciphertext triggered an anomalous 0 (mi = mi-1)or
not(mi = mi-1).

2 z
5 0151 G 0.10
c c
@ u
© ©
> 0101 2
S 3 0.05
£ 0.051 2
e [
o a.
0.00 - : = 0.00 : T ; :
650 660 670 1550 1560 1570 1580
Time (ms) Time (ms)
(a) CIRCL histogram (b) PQCrypto-SIDH histogram

Figure 10: Distribution of the timings measured by the at-
tacker during the remote key extraction attack, with the server
running on an i7-9700 CPU. The attacker makes 300 (CIRCL)
and 1000 (PQCrypto-SIDH) connections (all with the same
challenge ciphertext, constructed as per Section 5.3.2) and
measures the time until the last connection completes. We
group the execution time (filtered) of each key bit extraction
based on whether it should have triggered an anomalous 0 in
the Montgomery ladder (i.e., whether m; = 1 — m;_, or not).

Effects (from follow-up paper)

In this paper, we demonstrate that Hertzbleed’s effects are
wide ranging, not only affecting cryptosystems beyond SIKE,
but also programs beyond cryptography, and even computa-
tions occurring outside the CPU cores. First, we demonstrate
how latent gadgets in other cryptosystem implementations—
specifically “constant-time” ECDSA and Classic McEliece—
can be combined with existing cryptanalysis to bootstrap
Hertzbleed attacks on those cryptosystems. Second, we demon-
strate how power consumption on the integrated GPU influ-
ences frequency on the CPU—and how this can be used to
perform the first cross-origin pixel stealing attacks leveraging
“constant-time” SVG filters on Google Chrome.

Our attack against BearSSL's ECDSA implementation is
on the edge of practicality, and notable mostly for breaking
an extremely carefully written implementation of a stan-
dardized and well-studied cryptosystem. By contrast, our
second attack, against Classic McEliece, is practical, and
we demonstrate full plaintext recovery via 17.5 days of
interaction with the server across a LAN.

One limitation of both case studies is that ECDSA
signing and Classic McEliece decapsulation are too fast to
saturate the CPU (to reach thermal limits) with a request-
per-TCP-connection server. For the sake of demonstration,
we sidestep this limitation with a server that multiplexes
multiple requests in a single TCP connection; we discuss
this design decision further below.

In our third case study, we show that Hertzbleed can be
used to violate the same-origin policy in the latest version of
Google Chrome due to data-dependent power consumption
in the integrated GPU (iGPU) when applying SVG filters to
graphical data. This attack is completely practical, recover-
ing pixel values cross origin at between 1 and 3 pixels per
second across half a dozen Intel and AMD machines we
tested. Along the way we demonstrate, for the first time,
that iGPUs exhibit data-dependent power consumption, and
that variable power draw in one SoC component (the iGPU)
can cause frequency throttling in another (the CPU cores).
Notably, ours is the first demonstrated pixel stealing attack
in which the SVG filter rendering code runs in the iGPU
and where the filter’s running time is the same regardless of
leaked pixel color.

Critiques

Strengths: new way of doing side-channel attack, has case studies

Weaknesses: none

