SRAM Has No Chill



Attack:

SRAM has traditionally been considered resilient against cold boot attacks, as it typically loses its stored
information once power is removed. However, in this paper, the authors introduce a novel approach that
challenges this assumption, demonstrating that on-chip SRAM can, under specific conditions, retain data
even after power cycles and software resets. This new method, called Volt Boot, exploits a fundamental
vulnerability in modern system-on-chip (SoC) architectures, specifically targeting the way power distribution
networks are physically separated within these chips. Unlike conventional cold boot attacks that rely on
extreme cooling or the natural retention time of volatile memory, Volt Boot manipulates power states—such
as selectively keeping certain sections of the chip powered while others are turned off—to achieve data
persistence across reboots.

By conducting experiments on multiple ARM Cortex-A devices, the researchers successfully applied Volt
Boot to extract data stored in caches, processor registers, and internal RAM (iRAM) with complete accuracy.
This is a significant departure from prior SRAM-based attacks, which often require intricate signal processing
or statistical reconstruction methods to retrieve meaningful information. In contrast, Volt Boot is capable of
directly recovering stored data with 100% fidelity, making it a powerful and highly reliable threat. The
implications of this discovery are substantial, as they expose a previously unrecognized risk in the security of
modern processors, particularly in environments where sensitive data is assumed to be erased upon reboot.



2.1 On-Chip SRAM

SRAM is the building block of volatile internal memories, such as
caches, iRAM, registers, TLBs, and BTBs, making them one the
most common memory in modern computing systems. Figure 1
illustrates a typical 6-transistor SRAM cell, which is composed
of two inverters in a positive feedback configuration to hold a
data bit. The cell’s state is accessible through transistors N1 and
N2, and these transistors provide access to the data bit (Q) and
its complement (~Q), respectively. Unless a processor executes a
read/write command, Word Line remains de-asserted with data
stored in the cross-coupled structure formed by inverter (I) and
inverter (2).

SRAM is energy-efficient, fast, long-life, and self-refreshing; the
only requirement for data retention is sufficient voltage from the
power supply to maintain the positive feedback loop between the
two inverters. The voltage required by an SRAM cell to retain the
state is called its data retention voltage [20]. Data retention voltage
is both process variation and data-dependent but is generally much
lower than the threshold voltage of either inverter (i.e., the ‘turn-
on’ voltage). Provided the voltage of a cell is more than or equal to
its data retention voltage, the cell retains its state. Exploiting this
property, modern processors dynamically scale down the voltage
when the RAM is not actively accessed because it reduces the energy
leakage through parasitic paths.

Unlike other types of memory, direct access (i.e., direct software
read/write) to many types of on-chip SRAM (e.g., instruction cache)
is uncommon. However, most SoCs provide access to these internal
memories through various methods to debug low-level memory
errors; ARM allows RAMINDEX [23] and direct memory access [4]
operations in ARMv8 architecture, while RISC V processors [38]
allow memory-mapped access. For example, a Cortex-A72 processor
provides access to 15 different internal RAMs, including caches,
TLBs, and BTBs through its ¢p15 co-processor interface.

Bit Line

¢

Word Line

NI

QY]
N2

~Bit Line

Figure 1: Typical 6-transistor SRAM cell.



Power Domains

PMIC

,.6,

Core domain

"""" CPU/GPU Caches
cores
v 3 ¥
I/0 domain

1/0O controllers

\/

Memory domain

DRAM
controllers

NVMs

SoC




Volt Boot System

through the test pad TP15 when we attach an 800mV probe.
The current varies between 400mA to 600mA depending on
software workload. When the SoC’s main supply line (pow-
ered through a USB C) is disconnected abruptly, the cores
draw power from the attached probe. The probe maintains
the voltage level even if the cores demand a momentary
current surge. The current consumption drops to 8mA after

execution capability, we must use appropriate data and in-
struction synchronization barriers. For example, Cortex-A72
processors uses SYS #0, c15, c4, #0@, <xt>instruction to
execute RAMINDEX operation (cache access request to CP15
co-processor). Data and instruction synchronization barrier

6.1 Attack Execution Steps

In this section, we discuss how to execute an attack on SoCs (see
Figure 5 for summary).

instructions DSB SY and ISB, respectively, must follow this

a few microseconds, and the memory domain stays in this instruction before reading the cache data output register

retention state indefinitely.
(3) Power cycling and booting the system: Once the exter-

interface. A set of general load/store instructions moves the

data from the general-purpose CPU registers to DRAM for
(1) Identifying target domains and their associated pins:

Once we identify a target device, the first step is to identify
the pins that supply SRAM with power. In most cases, it
is impossible to locate a specific pin on the circuit board,
because SoC chips use advanced packaging, such as BGA.
However, it is not essential to find exact pins in an SoC
package as supply pins are connected to passive components
(e.g., decoupling capacitors) or circuit-board-level test pads,
which tend to be located near the PMIC (§5). The layout of
passive components follows a typical pattern illustrated in
Figure 4. For our evaluation platforms, we list the test points
and target domain’s pin names in Table 3 and present them
in a visual form in Figure 6.

(2) Attaching a voltage probe: We measure the nominal volt-

age at the pin(s) and attach an external power supply probe
at the same voltage level. The power source needs to supply
sufficient current so that the level stays the same when we
turn off the device’s main power; otherwise, we risk losing
the data. As an example, a Raspberry Pi 4 draws current

nal probe is in place, we disconnect the device from the main
power source while our voltage probe keeps the target SRAM
active.

A system’s boot-up method after power disconnect varies.
Some systems allow booting up from alternative media only
if the user data from the disk is erased, whereas some devices
boot internally without needing any external boot media.
We emulate this behavior by booting up the Raspberry Pis
from another media through a USB mass storage device. We
write a post-reboot data extraction program that performs
the following tasks:

(A) Reduce contamination on the SRAM’s retained data during
boot-up by avoiding storing data to it (either explicitly or
implicitly).

(B) Exfiltrate data from the SRAM to other memory (e.g., Flash,
DRAM, or a debugger) for post-processing.

The cache extraction software executes CP15 instructions
and reads out the data register interface of the caches to
general-purpose CPU registers. Cache access requires read-
/write to system registers. For processors with out-of-order

further processing.

We directly dump the iRAM’s through the debug interface,
because 1.MX535 requires no external firmware support for
booting up. Thus, we connect a JTAG probe and directly read
out the processor’s (Cortex-A8) iRAM contents.

(4) Analysing the memory contents: Depending on the tar-

get SRAM and the objective, an attacker needs to adapt post-
processing. Since Volt Boot reads out the memory without
any error, the noise source in a successful attack is the dy-
namic behavior of software and its effects on the data stored
in embedded SRAM. For example, error-free key extraction
from a cache memory depends on the processing core’s work-
load and other background processes.



Results

(@) (b)

Figure 7: Snapshots of i-cache after attacking bare-metal
software in (a) BCM2711 and (b) BCM2837 SoCs. Uninitial- (a) drcache (b} 1-cache
ized cache cells power on into random sate (see Figure 3),
but when we execute Volt Boot attack, instructions stay in
the i-cache across power cycles.

a

Figure 8: Snapshots of the caches after executing Volt Boot
on a system running a general application. We generate the
cache images from one WAY of each type of cache.



Countermeasures

Potential Countermeasures to Volt Boot Attack

1. Eliminating Power Domain Separation (Not Practical)

Power domain separation is crucial for power efficiency and performance.

It allows dynamic voltage scaling and power gating in an SoC.

Exposed pins in power domains help filter noise and stabilize voltage.
Downside: Removing power domains is impractical due to performance and
implementation constraints.

2. Purging Residual Memory (Not Effective)

A simple method to prevent data retention is erasing memory during
power-down.

Software/hardware-driven memory clearing can be implemented.

Limitation: Abrupt power disconnection stops all operations, preventing proper
memory purging.

3. Resetting SRAMs at Startup (Effective but Rare)

SRAM retention becomes useless if memory is cleared after reboot.
Hardware-driven methods like MBIST (Memory Built-In Self-Test) can reset
memory.
Observation: Most devices boot with an undefined SRAM state unless software
writes to memory.
ARMvV8-A TrustZone (TZ) support prevents unauthorized memory access.

o

4. Mandated Authenticated Boot (Effective but Complex)

. Volt Boot attack requires booting a device with an exploitable system image.
. Secure boot mechanisms:
o OEM-signed system images prevent unauthorized boot media.
o Hash of the image is burned into fuses for verification.
° Limitations:
o Not all devices enforce authenticated boot, as it complicates firmware
updates.
o Some processors assume on-chip SRAM does not retain data across

power cycles.
5. Secure Cache Resetting (Challenging for L1 Caches)

. Some processors allow L2 cache reset by toggling nL2RST pin low for 16 cycles.

. L1 caches cannot be reset in this way due to their dependence on tag RAMs.

° Zeroization via ISA is a software solution but not hardware-based.

. Alternative: Internal power toggling of SRAMs at reset (requires hardware
modification).

6. TrustZone Support (Effective for Memory Isolation)

. ARM TrustZone (TZ) is a hardware-backed security mechanism in Cortex-A
processors.
. Every memory access undergoes a hardware security check.
. Cache memory lines are assigned a security bit (NS) to restrict unauthorized
access.
. When TZ is enforced:
o Secure memory remains inaccessible across power cycles.
o Unauthorized access attempts trigger hardware exceptions



Critiques

Positives: Shows a novel method of using cold boot style attacks to retrieve data that is cached
and does not require low temperatures.

Negatives: the paper is very technically dense



Slide Improvements

Add background

Shorted slides

Do not include direct text from paper

Add explanation to images

Do not have too much information on a single slide

Have a strong narrative through slides



